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Abstract. The standard topological representation of a Boolean algebra via the

clopen sets of a Stone space requires a nonconstructive choice principle, equivalent

to the Boolean Prime Ideal Theorem. In this paper, we describe a choice-free topo-

logical representation of Boolean algebras. This representation uses a subclass of

the spectral spaces that Stone used in his representation of distributive lattices via

compact open sets. It also takes advantage of Tarski’s observation that the regular

open sets of any topological space form a Boolean algebra. We prove without choice

principles that any Boolean algebra arises from a special spectral space X via the

compact regular open sets of X; these sets may also be described as those that are

both compact open in X and regular open in the upset topology of the specialization

order of X, allowing one to apply to an arbitrary Boolean algebra simple reasoning

about regular opens of a separative poset. Our representation is therefore a mix of

Stone and Tarski, with the two connected by Vietoris: the relevant spectral spaces

also arise as the hyperspace of nonempty closed sets of a Stone space endowed with

the upper Vietoris topology. This connection makes clear the relation between our

point-set topological approach to choice-free Stone duality, which may be called the

hyperspace approach, and a point-free approach to choice-free Stone duality using

Stone locales. Unlike Stone’s representation of Boolean algebras via Stone spaces,

our choice-free topological representation of Boolean algebras does not show that

every Boolean algebra can be represented as a field of sets; but like Stone’s repre-

sentation, it provides the benefit of a topological perspective on Boolean algebras,

only now without choice. In addition to representation, we establish a choice-free

dual equivalence between the category of Boolean algebras with Boolean homomor-

phisms and a subcategory of the category of spectral spaces with spectral maps. We

show how this duality can be used to prove some basic facts about Boolean algebras.
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§1. Introduction. Stone [30] proved that any Boolean algebra (BA) A
is isomorphic to the field of clopen sets of a Stone space (zero-dimensional
compact Hausdorff space), namely the Stone dual of A. As the Stone dual of
A is the set of ultrafilters of A with the topology generated by {â | a ∈ A},
where â is the set of ultrafilters containing a, Stone’s representation requires
a nonconstructive choice principle—equivalent to the Boolean Prime Ideal
Theorem—asserting the existence of sufficiently many ultrafilters.

In this paper, we describe a choice-free topological representation of BAs.
This representation uses a subclass of the spectral spaces that Stone [31]
used in his representation of distributive lattices via compact open sets. It
also takes advantage of Tarski’s [33, 34] observation that the regular open
sets of any topological space form a Boolean algebra. We prove without
choice principles that any Boolean algebra arises from a special spectral
space X via the compact regular open sets of X; these sets may also be
described as those that are both compact open in X and regular open in
the upset topology of the specialization order of X, allowing one to apply
to an arbitrary BA simple reasoning about regular opens of a separative
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poset.1 Our representation is therefore a mix of Stone and Tarski, with the
two connected by Vietoris [39]: the relevant spectral spaces also arise as
the hyperspace of nonempty closed sets of a Stone space endowed with the
upper Vietoris topology. We characterize these spectral spaces, which we
call UV-spaces, with several axioms including a special separation axiom,
reminiscent of the Priestley separation axiom [27]. The connection with
the Vietoris hyperspace construction makes clear the relation between our
point-set topological approach to choice-free Stone duality, which may be
called the hyperspace approach, and a point-free approach to choice-free
Stone duality using Stone locales [21, 36].

Unlike Stone’s representation of BAs via Stone spaces, the choice-free
topological representation of BAs via UV-spaces does not show that every
BA can be represented as a field of sets, with complement as set-theoretic
complement and join as union. Such a representation implies the Boolean
Prime Ideal Theorem.2 However, like Stone’s representation, ours provides
the benefit of a topological perspective on BAs, only now without choice.

In addition to representation, we establish a choice-free dual equivalence
between the category of BAs with Boolean homomorphisms and the cate-
gory of UV-spaces with special spectral maps. We show how this duality
can be applied by using it to prove some basic theorems about BAs.

The axiom of choice and its variants have traditionally been of general
interest to logicians. Interest in choice also arises specifically in connection
with topology and Stone duality as in [20, 21, 22]. In this paper, we assume
the motivations summarized in [14] for investigating mathematics without
the axiom of choice—in particular, mathematics based on ZF set theory
instead of only ZFC. Only starting in our applications section (Section 8)
will we go beyond ZF by using the axiom of dependent choice (DC), which is
widely considered to be constructively acceptable (see [29, § 14.76]). There
we work in the style of what is called quasiconstructive mathematics in [29],
defined as “mathematics that permits conventional rules of reasoning plus
ZF + DC, but no stronger forms of Choice” (p. 404).

The paper is organized as follows. Sections 2 and 3 present requisite
background and the representation to be used in the following sections,

1The consideration of two topologies is clearly related to Priestley’s [27] alternative

representation for distributive lattices using certain ordered Stone spaces: any distribu-
tive lattice arises from a Priestley space via the sets that are both clopen in the Stone

topology of the space and open in the upset topology arising from the additional order.
We consider a Priestley-like version of our representation of BAs in Section 10.

2If a BA is isomorphic to a field F of sets over a set X, then picking any point x ∈ X

gives us an ultrafilter {S ∈ F | x ∈ S}. The statement that every BA contains an

ultrafilter then implies that for any disjoint filter-ideal pair in a BA, the filter can be
extended to an ultrafilter disjoint from the ideal. The equivalent dual statement for

ideals is the Boolean Prime Ideal Theorem.
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which is redescribed in Section 4. Section 5 characterizes the resulting du-
als of BAs as UV-spaces; Section 6 establishes the dual equivalence result;
and Section 7 contrasts our hyperspace approach with a localic approach.
Section 8 contains a “duality dictionary” for translating between BA no-
tions and UV notions, and Section 9 contains sample applications of the
duality. Although our focus is on choice-free duality, Section 10 considers
three perspectives on UV-spaces assuming choice. Section 11 concludes
with a brief recap and look ahead.

§2. Background. The choice-free topological representation of BAs that
we will describe results from “topologizing” the choice-free representation
of BAs in [16, 17].3 A possibility frame from [16] is a triple (S,6, P ) where
(S,6) is a poset and P is a collection of regular open sets in the upset
topology Up(S,6) of the poset, such that P contains S and is closed under
intersection and the operation ¬ defined by

¬U = {x ∈ S | ∀x′ > x x′ 6∈ U}.(1)

Recall that an open set U in a space is regular open iff U = int(cl(U)).
Since the closure and interior operations in Up(S,6) are calculated by

cl6(U) = {x ∈ S | ∃y > x : y ∈ U},(2)

int6(U) = S \ cl6(S \ U) = {x ∈ S | ∀y > x y ∈ U},(3)

an open set U in Up(S,6) is regular open iff

U = int6(cl6(U)) = {x ∈ S | ∀x′ > x∃x′′ > x′ : x′′ ∈ U}.(4)

Also note that ¬U = int6(X \ U), so U is regular open iff U = ¬¬U .
As Tarski [33, 34, 35] observed, the regular open sets of any topological

space form a (complete) Boolean algebra with binary meet as intersection
and complement as interior of set-theoretic complement, so any subalgebra
thereof is also a Boolean algebra. Thus, for any possibility frame (S,6, P ),
the set P gives us a Boolean algebra.4

Conversely, given any Boolean algebra A, we construct a possibility frame
(PropFilt(A),⊆, {â | a ∈ A}) where PropFilt(A) is the set of proper filters
of A, ordered by inclusion, and â = {F ∈ PropFilt(A) | a ∈ F}; then
{â | a ∈ A} is a collection of regular open sets from Up(PropFilt(A),⊆) that
satisfies the required closure conditions, and under the operations ∩ and

3The focus of [16, 17] is on modal algebras, but here we present only the Boolean side
of the story.

4From the perspective of locale theory (see Section 7), the collection Up(S,6) of upsets

forms a locale with meet as intersection and join as union. Equivalently, Up(S,6) may

be viewed as a complete Heyting algebra. Then ¬U is the pseudocomplement of U in
Up(S,6), i.e., the largest upset whose meet with U is ∅, and P is a subalgebra of the

Boolean algebra of all regular elements (i.e., those U such that U = ¬¬U) of Up(S,6).
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¬ it becomes a Boolean algebra isomorphic to A.5 The possibility frames
that arise (isomorphically) in this way, called filter-descriptive in [16], are
exactly those satisfying the separation property that if x 66 y, then there is
a U ∈ P such that x ∈ U and y 6∈ U , and the “filter realization” property
that if F is a proper filter in P , then F = {U ∈ P | x ∈ U} for some
x ∈ S. In [16, 17] it is proved without choice principles that the category
of filter-descriptive frames with appropriate morphisms (see Section 6) is
dually equivalent to the category of BAs with Boolean homomorphisms.

In Section 3, we will show that the duality just sketched can be un-
derstood topologically as a choice-free duality between BAs and special
spectral spaces. In particular, the dual possibility frame (S,6, P ) of a BA
gives rise to a spectral space X by using P as a basis for a topology on
S. This makes 6 the specialization order of X. We can then conveniently
pick out among all regular opens in the upset topology of 6 just those that
give us back our original BA via P : those that are also compact open in
X. It turns out we may equivalently think of these compact sets as regular
open in X, though thinking of them as regular open in the upset topology
of 6 has the advantage of simplifying reasoning. The story above is our
starting point, but we go much further: we develop a full topological dual-
ity, including a duality dictionary for many algebraic concepts, along with
sample applications via topological proofs of basic facts about BAs.

There are several precedents for the strategy of working with all proper
filters of a lattice. In the context of logic, since the early 1980s logicians
have studied alternative semantics for classical first-order logic and classical
modal logics in which one builds a canonical model using all consistent and
deductively closed sets of formulas, rather than only maximally consistent
sets of formulas [28, 19, 1, 2, 3, 16, 4]. Although not presented as such,
these constructions are essentially applications of the fact indicated above
that any BA A embeds into the BA of regular open upsets in the poset
of proper filters of A. If A is the Lindenbaum-Tarski algebra of a logic,
then its poset of proper filters is isomorphic to the poset of consistent and
deductively closed sets of formulas. The subsets of this canonical model
that are definable by a formula then correspond to the sets â above.

The idea of topologizing the set of proper filters also appears in Gold-
blatt’s [12] representation of ortholattices, discussed in Section 10.3. How-
ever, Goldblatt uses a different topology on the set of proper filters with
the consequence that his representation is not choice free.

After completing the following work, we learned that Moshier and Jipsen
[24] propose a choice-free duality for arbitrary lattices using the space of

5It can then be proved choice-free that the complete BA of all regular opens from
Up(PropFilt(A),⊆) is a canonical extension of A in the sense of [10] (see [17, § 5.6] and

Theorem 8.27 below).
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all filters endowed with the analogous â topology. Though we work with
proper filters (since otherwise there would be only two regular open sets
with respect to 6, namely ∅ and the whole space), the more important
difference is that we study what happens in the special case of BAs.

Our approach to choice-free Stone duality for BAs is also closely related
to a point-free approach. The collection Filt(A) of all filters of a BA A
ordered by inclusion is an example of what we will call a Stone locale: a zero-
dimensional compact locale (see Section 7 for definitions). The category of
Stone locales with localic maps6 is dually equivalent to the category of BAs
with Boolean homomorphisms. However, our aim is to provide a choice-free
duality using spaces instead of locales. We do so by taking the non-zero
elements of the Stone locale Filt(A) as the points of a new space with
an appropriate topology, namely the upper Vietoris topology (see Section
3). Thus, we call our approach to choice-free Stone duality the hyperspace
approach, in contrast to the localic approach using Stone locales.

The hyperspace approach allows us to retain the intuitiveness of rea-
soning with a set of points, without paying the price of choice principles.
But there is a cost, or at least a currency exchange: whereas standard
Stone duality represents each BA as a subalgebra of the powerset of a set,
the choice-free dualities in [16] and in this paper represent each BA as a
subalgebra of the regular open algebra of a separative poset.

Definition 2.1. Let (S,6) be a poset, and for x ∈ S, let ⇑x = {x′ ∈ S |
x 6 x′}. Then (S,6) is separative iff for any x, y ∈ S, x 66 y implies that
there is a z ∈ ⇑y such that ⇑z ∩ ⇑x = ∅. Equivalently, (S,6) is separative
iff every principal upset ⇑x is regular open in Up(S,6).

It is easy to see that the separation property mentioned for possibility
frames above implies separativity of the underlying partial order.

Thus, with the choice-free duality for BAs that we will pursue, instead
of reasoning about sets with intersection and set-theoretic complement, we
reason about separative posets (given by the specialization orders of our
spaces) with intersection and the operation ¬ defined in (1). A major differ-
ence is that for U ⊆ S, while U ∪ (S \U) = S, we often have U ∪ ¬U ( S.7

This makes reasoning with ¬ more subtle, but one can quickly get used to
reasoning patterns with ¬ of the kind shown in the following lemmas.

Lemma 2.2. Let (S,6) be a poset and U regular open in Up(S,6). If
x 6∈ U , then there is an x′ > x such that x′ ∈ ¬U .

Proof. If x 6∈ U , then since U is regular open, it follows by (4) that there
is an x′ > x such that for all x′′ > x′, x′′ 6∈ U , which means x′ ∈ ¬U . a

6For the definition of localic maps, see, e.g., [25, § II.2].
7From the perspective of Footnote 4, the observation that we often have U ∪ ¬U ( S

reflects the fact that Up(S,6) is a Heyting algebra that is typically not Boolean.
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Lemma 2.3. Let (S,6) be an infinite separative poset and U regular open
in Up(S,6). Then either U or ¬U is infinite.

Proof. Let x ∼ y iff ⇑x ∩ U = ⇑y ∩ U . If U is finite, then ∼ partitions
the infinite set S into finitely many cells, one of which must be infinite.
Call it I, and define f : I → ℘(¬U) by f(x) = ⇑x∩¬U . We claim that f is
injective. For if x, y ∈ I and x 66 y, then by separativity, there is a z ∈ ⇑y
such that ⇑z∩⇑x = ∅. It follows, since ⇑x∩U = ⇑y∩U , that ⇑z∩U = ∅,
so z ∈ ¬U . Thus, z ∈ f(y) but z 6∈ f(x), so f is injective. Then since I is
infinite, it follows that ℘(¬U) is infinite and hence ¬U is infinite. a

§3. Representation of BAs using spectral spaces. Before review-
ing spectral spaces, let us fix some notational conventions.

We will conflate a BA A and its underlying set, and we will conflate
a topological space X and its underlying set, so that we will write, e.g.,
‘a ∈ A’, ‘x ∈ X’, etc. The top and bottom elements of a bounded lattice
such as a BA are denoted ‘1’ and ‘0’, respectively, possibly with subscripts
to indicate the relevant algebra. We will often consider filters in a BA, as
well as principal upsets in the specialization order of a space. To avoid any
confusion about which side a principal filter/upset is on—the algebra side
or the space side—we make the following notational distinction.

Notation 3.1. Let A be a BA whose underlying order is ≤ and X a
space whose specialization order is 6. For a ∈ A and x ∈ X:

1. ↑a = {b ∈ A | a ≤ b} and ↓a = {b ∈ A | b ≤ a};
2. ⇑x = {y ∈ X | x 6 y} and ⇓x = {y ∈ X | y 6 x}.

It will also help to distinguish between the built-in complement operation
of a BA A and the operation ¬ defined in (1) of Section 2.

Notation 3.2. Given a BA A and a space X whose specialization order
is 6:

1. let − be the complement operation in A;
2. let ¬ be the operation defined for U ⊆ X by ¬U = int6(X \ U).

It is important to remember that we are distinguishing two interior
(resp. closure) operations associated with a given space X.

Notation 3.3. For a space X whose specialization order is 6:

1. int and cl are the interior and closure operations for X;
2. int6 and cl6 are the interior and closure operations for the upset

topology with respect to 6, as in (2)–(3) of Section 2.

As is well known, the operations int6 and cl6 coincide with int and cl,
respectively, if and only if X is an Alexandroff space.

The following notation will be used throughout.
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Notation 3.4. Let X be a space. We define the following collections of
subsets of X:

1. O(X) is the collection of sets that are open in X;
2. C(X) is the collection of sets that are compact in X;
3. CO(X) = C(X) ∩ O(X);
4. RO(X) is the collection of sets that are regular open in X;
5. CRO(X) = C(X) ∩ RO(X);
6. RO(X) is the collection of sets that are regular open in Up(X,6),

where 6 is the specialization order of X;
7. ORO(X) = O(X) ∩RO(X);
8. CORO(X) = CO(X) ∩RO(X);
9. Clop(X) is the collection of sets that are clopen in X.

Let us now recall the notion of a spectral space and two theorems illus-
trating its importance.

Definition 3.5. A topological space X is a spectral space if X is com-
pact, T0, coherent (CO(X) is closed under intersection and forms a base
for the topology of X), and sober (every completely prime filter in O(X)
is O(x) = {U ∈ O(X) | x ∈ U} for some x ∈ X).

theorem 3.6 (Stone [31]). L is a distributive lattice iff L is isomorphic
to the lattice of compact open sets of a spectral space.

theorem 3.7 (Hochster [15]). X is a spectral space iff X is homeomor-
phic to the spectrum of a commutative ring.

We will show that every BA A can be represented as CORO(X) (or
equivalently CRO(X), as shown in Section 4) for some spectral space X.
Using the nonconstructive Boolean Prime Ideal Theorem, one could prove
this by taking X to be the Stone space of A: since the specialization order
6 in a Stone space is the discrete order, all subsets are regular open in
Up(X,6), and it can be proved that the compact open sets of X are exactly
the clopen sets used in the standard Stone representation. However, it is
also possible to provide a choice-free representation, as shown below.

We first recall the upper Vietoris topology [39] on the hyperspace of
nonempty closed sets of a Stone space. Where F(X) is the collection of
nonempty closed subsets of X and U ∈ Clop(X), let

2U = {F ∈ F(X) | F ⊆ U}.
Observe that 2U ∩2V = 2(U ∩V ), so {2U | U ∈ Clop(X)} is closed under
binary intersection.

Definition 3.8. Given a Stone space X, define U V (X) to be the space
of nonempty closed sets of X with the topology generated by the family
{2U | U ∈ Clop(X)}.
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The same idea can be applied to the space of proper filters of a BA. For
a ∈ A, let

â = {F ∈ PropFilt(A) | a ∈ F}.

Observe that â∩b̂ = â ∧ b, so {â | a ∈ A} is closed under binary intersection.

Definition 3.9. Given a BA A, define UV (A) to be the space of proper
filters of A with the topology generated by {â | a ∈ A}.

Proposition 3.10. For any Stone space X, U V (X) is homeomorphic
to UV (Clop(X)), regarding Clop(X) as the BA of clopen subsets of X.

Proof. Let f : C 7→ {U ∈ Clop(X) | C ⊆ U}. Since X is nonempty,
f(C) is clearly a proper filter in Clop(X), so f(C) ∈ UV (Clop(X)). For
injectivity, if C 6= C ′, then without loss of generality suppose x ∈ C \ C ′.
Since X is compact Hausdorff, it follows that there is a U ∈ Clop(X) such
that C ′ ⊆ U but x 6∈ U , so C 6⊆ U . Hence U ∈ f(C ′) but U 6∈ f(C).
For surjectivity, if F is a proper filter in Clop(X), then F has the finite
intersection property, so by the compactness of X, we have that

⋂
F is

nonempty, and since
⋂
F is the intersection of closed sets, it is closed. We

claim that f(
⋂
F ) = F . That f(

⋂
F ) = {U ∈ Clop(X) |

⋂
F ⊆ U} ⊇ F

is immediate. To see that f(
⋂
F ) ⊆ F , if U ∈ Clop(X) and

⋂
F ⊆ U , so

X \ U ⊆
⋃
{X \ V | V ∈ F}, then by compactness there is a finite F0 ⊆ F

such that X \ U ⊆ {X \ V | V ∈ F0} and hence
⋂
F0 ⊆ U . Then since F0

is finite, it follows that U ∈ F . For continuity of f , if Û is a basic open in
UV (Clop(X)), so U ∈ Clop(X), then we have:

f−1[Û ] = {C ∈ UV (X) | f(C) ∈ Û}
= {C ∈ UV (X) | U ∈ f(C)}
= {C ∈ UV (X) | C ⊆ U}
= 2U.

For openness of f , if 2U is a basic open in U V (X), so U ∈ Clop(X), then
we have:

f [2U ] = {f(C) | C ∈ 2U}
= {f(C) | C ⊆ U}
= {f(C) | U ∈ f(C)}
= Û .

For the last equality, the left-to-right inclusion follows from the fact that
f(C) is a proper filter, since C 6= ∅, and the right-to-left inclusion follows
from the surjectivity of f . a
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Remark 3.11. Assuming the Boolean Prime Ideal Theorem, one can
also prove that for any BA A, UV (A) is homeomorphic to U V (Stone(A)),
where Stone(A) is the Stone dual of A (see Section 10.1).

Proposition 3.12. For any BA A:

1. UV (A) is a spectral space;
2. the specialization order in UV (A) is the inclusion order.

Proof. We first show that each â is compact open in UV (A). Since

the sets b̂ form a basis, it suffices to show that if â ⊆
⋃
i∈I
b̂i, then there is a

finite subcover. If â ⊆
⋃
i∈I
b̂i, then every proper filter that contains a also

contains one of the bi. In particular, the principal filter ↑a contains one

of the bi, which implies a ≤ bi and hence â ⊆ b̂i, so b̂i alone is the finite
subcover. It follows that UV (A) is compact, since X = 1̂. It also follows
by the definition of UV (A) that the compact open sets form a basis.

To see that the compact opens are closed under binary intersection, sup-

pose U and V are compact open, so U =
⋃
i∈I
âi and V =

⋃
j∈J

b̂j for finite I

and J . Then

U ∩ V =
⋃

i∈I, j∈J
(âi ∩ b̂j) =

⋃
i∈I, j∈J

âi ∧ bj ,

which is a finite union of compact opens. Hence U ∩ V is compact open.
For T0, if F 6= F ′, without loss of generality suppose a ∈ F \ F ′. Then

F ∈ â but F ′ 6∈ â, and â is open, so we are done.
For sobriety, we show that every completely prime filter F in O(UV (A))

is of the form O(F ) = {U ∈ O(UV (A)) | F ∈ U} for some F ∈ UV (A).
Let F be the filter generated by {a ∈ A | â ∈ F}. Then since F is a proper
filter in O(UV (A)), it follows that F is a proper filter in A. To see that
F = O(F ), the right-to-left direction is immediate from the definition of
F . For the left-to-right direction, suppose U =

⋃
i∈I
âi ∈ F . Then since F is

completely prime, there is an ai such that âi ∈ F , which implies ai ∈ F ,
so F ∈ âi. Thus, âi ∈ O(F ) and hence U ∈ O(F ).

For part 2, we already saw above for T0 that if F 6⊆ F ′, then F 66 F ′.
Conversely, if F ⊆ F ′, then for any basic open â, if F ∈ â and hence a ∈ F ,
then a ∈ F ′ and hence F ′ ∈ â, so F 6 F ′. a

We now provide the promised choice-free representation.

theorem 3.13.

1. For each BA A, the map ·̂ : A → CORO(UV (A)) is an isomorphism
from A to CORO(UV (A)) ordered by inclusion.
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2. CORO(UV (A)) is a BA with operations given by:

U ∧ V = U ∩ V −U = int6(UV (A) \ U) U ∨ V = int6(cl6(U ∪ V )).

(5)

Proof. For part 1, we will show that

CORO(UV (A)) = {â | a ∈ A},(6)

for then the map a 7→ â is the isomorphism from A to CORO(UV (A)),

since clearly a ≤ b iff â ⊆ b̂.
For the right-to-left inclusion of (6), we showed in the proof of Proposition

3.12.1 that each â is compact open in UV (A). Now we show that â is
regular open in Up(UV (A),6), using the fact from Proposition 3.12.2 that
the specialization order 6 is the inclusion order ⊆. First, â is an 6-upset,
for if F ∈ â and F 6 F ′, so a ∈ F and F ⊆ F ′, then a ∈ F ′ and hence
F ′ ∈ â. Then to see that â is regular open, by (4) it suffices to show that
if F 6∈ â, then there is a proper filter F ′ ⊇ F such that for all proper filters
F ′′ ⊇ F ′, we have F ′′ 6∈ â. Indeed, if F 6∈ â, so a 6∈ F , then the filter F ′

generated by F ∪ {−a} is a proper filter with F ′ ⊇ F , and for all proper
filters F ′′ ⊇ F ′, we have a 6∈ F ′′ and hence F ′′ 6∈ â.

For the left-to-right inclusion of (6), suppose S is compact open, so S =
â1 ∪ · · · ∪ ân for some a1, . . . , an ∈ A. Now if in addition â1 ∪ · · · ∪ ân is
regular open in Up(UV (A),6), then we claim

â1 ∪ · · · ∪ ân = a1 ∨ · · · ∨ an
∧

.(7)

First, we show

a1 ∨ · · · ∨ an
∧

= int6(cl6(â1 ∪ · · · ∪ ân)).(8)

For the left-to-right inclusion, if F ∈ a1 ∨ · · · ∨ an
∧

, so a1∨· · ·∨an ∈ F , then
for any proper filter F ′ ⊇ F , there is some ai such that −ai 6∈ F ′. Thus,
the filter F ′′ generated by F ′ ∪{ai} is proper, and ai ∈ F ′′ implies F ′′ ∈ âi
and hence F ′′ ∈ â1 ∪ · · · ∪ ân. Thus, by (4), F ∈ int6(cl6(â1 ∪ · · · ∪ ân)).

Conversely, if F 6∈ a1 ∨ · · · ∨ an
∧

, so a1 ∨ · · · ∨ an 6∈ F , then the filter F ′

generated by F ∪ {−a1 ∧ · · · ∧−an} is a proper filter, and for every proper
filter F ′′ ⊇ F ′, each ai is not in F ′′, so F ′′ 6∈ â1 ∪ · · · ∪ ân. Thus, by (4),
F 6∈ int6(cl6(â1 ∪ · · · ∪ ân)). Finally, if â1 ∪ · · · ∪ ân is regular open in
Up(UV (A),6), then â1 ∪ · · · ∪ ân = int6(cl6(â1 ∪ · · · ∪ ân)), which with (8)
implies (7). Thus, S ∈ {â | a ∈ A}.

For part 2, since a 7→ â is an isomorphism, we have:

â ∧ b̂ = â ∧ b −â = −̂a â ∨ b̂ = â ∨ b.(9)

We have already observed the first and third of the following equalities:

â ∧ b = â ∩ b̂ −̂a = int6(UV (A) \ â) â ∨ b = int6(cl6(â ∪ b̂)).
(10)
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For the second equality, if F ∈ −̂a, so −a ∈ F , then for every proper
filter F ′ ⊇ F , we have −a ∈ F ′, so a 6∈ F ′ and hence F ′ 6∈ â. Thus,
F ∈ int6(UV (A) \ â). If −a 6∈ F , then the filter F ′ generated by F ∪ {a}
is a proper filter such that F ⊆ F ′ ∈ â, so F 6∈ int6(UV (A) \ â).

Combining (9) and (10), we have:

â ∧ b̂ = â ∩ b̂ −â = int6(UV (A) \ â) â ∨ b̂ = int6(cl6(â ∪ b̂)),
(11)

which with (6) shows that the BA operations of CORO(UV (A)) satisfy the
equations in (5). a

Corollary 3.14. For each Stone space X, Clop(X) is isomorphic to
CORO(U V (X)) via the map U 7→ 2U .

Proof. By Theorem 3.13, we have an isomorphism between Clop(X)

and CORO(UV (Clop(X))) via the map that sends U ∈ Clop(X) to Û ∈
CORO(UV (Clop(X))). By the proof of Proposition 3.10, U V (X) is home-

omorphic to UV (Clop(X)) via the map f , which satisfies f−1[Û ] = 2U .
Thus, Clop(X) is isomorphic to CORO(U V (X)) via the map U 7→ 2U . a

§4. Regular opens in the Alexandroff and spectral topologies.
In response to the representation in the previous section, Tomáš Jakl (p. c.)
observed that in the special case of compact open sets, being regular open
in the Alexandroff space Up(UV (A)) is equivalent to being regular open in
the spectral space UV (A), i.e., CORO(UV (A)) = CRO(UV (A)). We have
U ∈ RO(UV (A)) iff U is an open set such that U = int(cl(U)), where int
and cl are the interior and closure operations of UV (A). This is equivalent
to U = U∗∗, where ∗ is the pseudocomplement operation on O(UV (A)):

U∗ = int(UV (A) \ U).

It is then easy to see that

U∗ =
⋃
{V ∈ O(UV (A)) | U ∩ V = ∅} =

⋃
{ĉ | U ∩ ĉ = ∅}.

Thus, we can derive CORO(UV (A)) = CRO(UV (A)) from the following
more basic facts.

Proposition 4.1. Let A be a BA.

1. If U ∈ O(UV (A)), then U∗ ⊆ ¬U ;
2. If U ∈ CO(UV (A)), then ¬U ⊆ U∗.

Proof. For part (1), suppose F ∈ U∗, so there is some c such that
F ∈ ĉ, i.e., c ∈ F , and U ∩ ĉ = ∅, i.e., no proper filter containing c belongs
to U . Thus, no proper filter extending F belongs to U , whence F ∈ ¬U .

For part (2), suppose U ∈ CO(X), so U = â1 ∪ · · · ∪ ân for some
a1, . . . , an ∈ A. Then assuming F ∈ ¬U , we have ¬a1, . . . ,¬an ∈ F and
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hence c := ¬a1 ∧ · · · ∧ ¬an ∈ F . Thus, F ∈ ĉ, and clearly U ∩ ĉ = ∅.
Therefore, F ∈ U∗. a

As an immediate corollary of Proposition 4.1, we have the following.

Corollary 4.2. For any BA A, CORO(UV (A)) = CRO(UV (A)).

Thus, by Theorem 3.13, A is isomorphic to CRO(UV (A)). It is also easy

to check that −â = int(UV (A) \ â) and â ∨ b̂ = int(cl(â ∪ b̂)).
If we do not restrict to compact open sets, then the operations ¬ and ∗

may behave differently; however, the extent of this difference depends on
one’s set-theoretic assumptions. It is a theorem of ZF + BPI that every
infinite BA contains a non-principal ultrafilter (see, e.g., [11, p. 174]), in
which case ¬ and ∗ can be distinguished with an open set as in Proposition
4.3.2 below. On the other hand, it is consistent with ZF that there is
an infinite BA in which every filter is principal [26] (for an overview, see
[18, p. 165]), and in such a BA ¬ and ∗ cannot be distinguished with open
sets in light of Proposition 4.3.3 (plus Proposition 4.1.1).

Proposition 4.3. Let A be a BA.

1. RO(UV (A)) ⊆ ORO(UV (A)).

2. If F is a non-principal ultrafilter in A and U =
⋃
{−̂a | a ∈ F}, then:

(a) F ∈ ¬U \ U∗;
(b) U = ¬¬U ;
(c) U ( U∗∗;
(d) ORO(UV (A)) 6⊆ RO(UV (A)).

3. Let F be a principal filter in A and U ∈ O(UV (A)). If F ∈ ¬U , then
F ∈ U∗.

Proof. For part 1, suppose U ∈ RO(UV (A)), so U = U∗∗. Since U∗ ∈
O(UV (A)), we have U∗ =

⋃
{b̂ | b ∈ B} for some B ⊆ A. Thus,

U∗∗ =
⋃
{ĉ |

⋃
{b̂ | b ∈ B} ∩ ĉ = ∅}

=
⋃
{ĉ | ∀b ∈ B b̂ ∩ ĉ = ∅}

=
⋃
{ĉ | ∀b ∈ B b ∧ c = 0}.

Let I := {c ∈ A | ∀b ∈ B b ∧ c = 0}, and observe that I is an ideal in
A. To see that U∗∗ ∈ RO(UV (A)), suppose F is a proper filter in A such
that F 6∈ U∗∗. It follows that F ∩ I = ∅. Let F ′ be the filter generated by
{a∧−c | a ∈ F, c ∈ I}. We claim that F ′ is a proper filter. If not, then there
are a1, . . . , an ∈ F and c1, . . . , cn ∈ I such that a1∧−c1∧· · ·∧an∧−cn = 0,
so a1∧· · ·∧an ≤ c1∨· · ·∨cn. Then since F is a filter containing a1, . . . , an,
we have c1 ∨ · · · ∨ cn ∈ F , and since I is an ideal containing c1, . . . , cn, we
have c1 ∨ · · · ∨ cn ∈ I, contradicting F ∩ I = ∅. Hence F ′ is a proper filter,
and clearly every proper filter F ′′ ⊇ F ′ is disjoint from I, so F ′′ 6∈ U∗∗. It
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follows that F ′ ∈ ¬(U∗∗), which with F ⊆ F ′ implies F 6∈ ¬¬(U∗∗). Thus,
¬¬(U∗∗) ⊆ U∗∗, so we have U∗∗ = U ∈ RO(UV (A)).

For part (2a), clearly F ∈ ¬U . Suppose for contradiction that F ∈ U∗,
so there is a c such that F ∈ ĉ and U ∩ ĉ = ∅. Since F ∈ ĉ, we have
c ∈ F . We claim that F is the principal filter generated by c, i.e., c ≤ a
for all a ∈ F . For if there is an a ∈ F such that c 6≤ a, then c ∧ −a 6= 0,
so there is a proper filter G containing c ∧ −a. Hence c,−a ∈ G, so G ∈ ĉ
and G ∈ −̂a. Since a ∈ F , G ∈ −̂a implies G ∈ U . Then since G ∈ ĉ, we
have G ∈ U ∩ ĉ, contradicting U ∩ ĉ = ∅ above. Thus, F 6∈ U∗.

For part (2b), U ⊆ ¬¬U always holds. To see ¬¬U ⊆ U , suppose G 6∈ U .

It follows by definition of U that for all a ∈ F , G 6∈ −̂a and hence −a 6∈ G.
We claim that G ⊆ F . Suppose b 6∈ F , so −b ∈ F since F is an ultrafilter.
Then by what we derived above, −−b 6∈ G, i.e., b 6∈ G. Thus, G ⊆ F . Then
since F ∈ ¬U , we have G 6∈ ¬¬U .

For part (2c), again U ⊆ U∗∗ always holds. Recall U∗ =
⋃
{ĉ | U ∩ ĉ =

∅}. Given the definition of U , the condition that U ∩ ĉ = ∅ is equivalent

to: for all a ∈ F , −̂a ∩ ĉ = ∅. This is in turn equivalent to: for all a ∈ F ,
−a∧c = 0, i.e., c ≤ a. Since F is a non-principal ultrafilter, the only c such
that c ≤ a for all a ∈ F is given by c := 0. Thus, U∗ =

⋃
{0̂} =

⋃
{∅} = ∅.

It follows that U∗∗ = UV (A). Then since F 6∈ U , we have U ( U∗∗.
Part (2d) is immediate from parts (2b)–(2c).
For part (3), since U is open, U =

⋃
{âi | i ∈ I} for some I. Assuming

F ∈ ¬U , we have ¬ai ∈ F for each i ∈ I. If F is a principal filter generated
by some c, then c ≤ ¬ai for each i ∈ I, so U ∩ ĉ = ∅. Hence F ∈ U∗. a

Remark 4.4. The inclusions

CORO(UV (A)) = CRO(UV (A)) ⊆ RO(UV (A)) ⊆ ORO(UV (A))

can be understood in terms of the dual correspondence between these types
of regular open sets and ideals in the BA A, as we will show in Section 8:

ORO(UV (A)) corresponds to ideals of A
RO(UV (A)) corresponds to normal ideals of A

CORO(UV (A)) corresponds to principal ideals of A.
= CRO(UV (A))

Given Theorem 3.13 and the fact that CORO(UV (A)) = CRO(UV (A)),
we can reason about elements of a BA as compact open sets in UV (A)
that are regular open in either the Alexandroff space Up(UV (A)) or in
the spectral space UV (A). Since the definition of a regular open set in the
Alexandroff space is especially simple, given by the first-order condition (4)
involving the specialization order 6, we will continue to use this definition
of regular open for the purposes of our calculations.
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§5. Characterization of choice-free duals of BAs. We now wish
to characterize the spectral spaces X that are homeomorphic to UV (A)
for some Boolean algebra A. For the following definition, given x ∈ X, let
CORO(x) = {U ∈ CORO(X) | x ∈ U}.

Definition 5.1. A UV-space is a T0 space X such that:

1. CORO(X) is closed under ∩ and int6(X \ ·) and is a basis for X;
2. every proper filter in CORO(X) is CORO(x) for some x ∈ X.

Remark 5.2. An equivalent definition of a UV -space (in light of Section
4 and the proof of Theorem 5.4 below) substitutes CRO for CORO and int
for int6 in Definition 5.1.

The conditions in Definition 5.1 are reminiscent of conditions mentioned
earlier: compare part 1 with the statement of coherence in Definition 3.5
and part 2 with the statement of sobriety in Definition 3.5. Note that the
basis condition implies an analogue of the Priestley separation axiom [27]:
if x 66 y, then there is a U ∈ CORO(X) such that x ∈ U and y 6∈ U .

Proposition 5.3. For any UV-space X, CORO(X) ordered by inclu-
sion is a BA with the following operations:

U ∧ V = U ∩ V ¬U = int6(X \ U) U ∨ V = int6(cl6(U ∪ V )).

Proof. As noted in Section 2, it is a well-known result of Tarski that the
collection of all regular open sets of a space forms a BA with the operations
∧, ¬, and ∨ defined above (see, e.g., [13, § 4]). By Definition 5.1.1, in a
UV-space X, CORO(X) with the operations ∧ and ¬ is a subalgebra of
the full regular open algebra and therefore a BA. a

We now prove that Definition 5.1 provides our desired characterization.

theorem 5.4. For any BA A and space X:

1. UV (A) is a UV-space;
2. X is homeomorphic to UV (CORO(X)) iff X is a UV-space.

Proof. For part 1, to see that property 1 of Definition 5.1 holds, if
U, V ∈ CORO(UV (A)), then by the proof of Theorem 3.13 we have that

U = â and V = b̂ for some a, b ∈ A. We also saw in the proof of Theorem

3.13 that â ∩ b̂ = â ∧ b ∈ CORO(UV (A)) and int6(UV (A) \ â) = −̂a ∈
CORO(UV (A)). For property 2, if F is a proper filter in CORO(UV (A)),
then by the proof of Theorem 3.13, G = {a ∈ A | â ∈ F} is a proper filter
in A. Then G is an element of UV (A) and CORO(G) = F .

For part 2, the left-to-right direction follows from part 1. For the right-
to-left direction, we will show that the map ε : x 7→ CORO(x) is the desired
homeomorphism from X to UV (CORO(X)). To see that ε is injective, if
x 6= y, then by T0, either x 66 y or y 66 x, which by Definition 5.1.1 implies
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CORO(x) 6= CORO(y). That ε is surjective follows from Definition 5.1.2.
To see that ε is continuous, it suffices to show that the inverse image of

each basic open is open. A basic open of UV (CORO(X)) is Û for some
U ∈ CORO(X). Then we have:

ε−1[Û ] = {x ∈ X | CORO(x) ∈ Û}
= {x ∈ X | U ∈ CORO(x)}
= {x ∈ X | x ∈ U}
= U.

Finally, to see that ε−1 is continuous, we have

ε[U ] = {CORO(x) | x ∈ U}
= {CORO(x) | U ∈ CORO(x)}
= Û .

For the last equality, the left-to-right inclusion uses that CORO(x) is a
proper filter, while the right-to-left follows from the surjectivity of ε. a

For the following, recall that for a space X, its specialization order is 6.

Corollary 5.5. Let X be a UV-space. Then:

1. X is a spectral space;
2. every set in CO(X) is a finite union of sets from CORO(X);
3. (X,6) may be obtained from a complete Heyting algebra8 by deleting

the top element, and each U ∈ CORO(X) is a filter in (X,6);
4. if X is finite, then (X,6) may be obtained from a Boolean algebra by

deleting the top element;
5. if U ∈ CORO(X) and z ∈ X, then there is a unique x ∈ U and
y ∈ ¬U such that z = x u y where u is the meet operation in (X,6).

6. if U, V ∈ CORO(X), then

U ∨ V = U ∪ V ∪ {x u y | x ∈ U, y ∈ V }.
Proof. For part 1, by Theorem 5.4.2, each UV-space X is homeomor-

phic to the space UV (CORO(X)), which is spectral by Proposition 3.12.1.
For part 2, if U ∈ CO(X), then it is a finite union of basic open sets, so by
Definition 5.1.1, it is a finite union of sets from CORO(X).

For part 3, as X is homeomorphic to the T0 space UV (CORO(X)) of
proper filters of CORO(X), it follows that (X,6) is order-isomorphic to
the poset (UV (CORO(X)),⊆) of proper filters of CORO(X) ordered by
inclusion. As observed by Tarski [32], the filters of any BA (indeed, any
distributive lattice) ordered by inclusion form a complete Heyting algebra,
so the proper filters ordered by inclusion form a complete Heyting algebra

8In Section 7, we strengthen ‘complete Heyting algebra’ to ‘Stone locale’, but we will

wait to introduce this notion.
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minus the top element. Finally, suppose U = â for a ∈ A, and F,G ∈
UV (A) are such that F,G ∈ â. Then a ∈ F ∩G = F uG, so F uG ∈ â = U .
It follows, given that U is an upset, that U is a filter in (UV (A),⊆).

For part 4, if X is finite, then the BA CORO(X) is finite. As in part
3, (X,6) is order-isomorphic to the poset of proper filters of CORO(X)
ordered by inclusion. Since any filter in a finite BA is principal, we ob-
tain that (X,6) is order-isomorphic to the poset of proper principal fil-
ters of CORO(X) ordered by inclusion, which is obviously isomorphic to
CORO(X) minus its top element.

For part 5, let X = UV (A). If U ∈ CORO(UV (A)), then by Theorem

5.4.2 and the proof of Theorem 3.13, we have U = â and ¬U = −̂a for
some a ∈ A, which implies ↑a ∈ U and ↑−a ∈ ¬U . Let u and t be the
meet and join operations in the Heyting algebra arising from (UV (A),⊆),
i.e., F u G = F ∩ G and F t G is the filter generated by F ∪ G. Let >
be the top element of the Heyting algebra, which we may identify with the
improper filter in A. Thus, ↑a t ↑−a = >. Now for any F ∈ UV (A), we
have F = (F t↑a)u(F t↑−a). Suppose G ∈ U and H ∈ ¬U , which implies
↑a ⊆ G and ↑−a ⊆ H, and F = G uH. Then we have

F t ↑a = (G uH) t ↑a = (G t ↑a) u (H t ↑a) = G u > = G,

and similarly F t ↑−a = H. This completes the proof of part 5.

For part 6, we show that â ∨ b̂ = â ∪ b̂ ∪ {F uG | F ∈ â, G ∈ b̂}. By the

proof of Theorem 3.13, â ∨ b̂ = â ∨ b. To see that â ∨ b ⊇ â ∪ b̂ ∪ {F uG |
F ∈ â, G ∈ b̂}, obviously â ∨ b ⊇ â ∪ b̂. If F ∈ â and G ∈ b̂, so a ∈ F

and b ∈ G, then a ∨ b ∈ F ∩ G = F u G, so F u G ∈ â ∨ b. To see that

â ∨ b ⊆ â ∪ b̂ ∪ {F u G | F ∈ â, G ∈ b̂}, if H ∈ â ∨ b, so a ∨ b ∈ H, and

H 6∈ â∪ b̂, so a 6∈ H and b 6∈ H, then we claim that H = (Ht↑a)u(Ht↑b).
For if c is in the right-hand side, then there are a0 ∈ H and b0 ∈ H such
that a0 ∧ a ≤ c and b0 ∧ b ≤ c, which implies a0 ∧ b0 ∧ (a ∨ b) ≤ c. Then
since a0, b0, a∨ b ∈ H, we have c ∈ H. Finally, both H t↑a and H t↑b are
proper filters. For if Ht↑a is improper, then −a ∈ H, which with a∨b ∈ H
implies b ∈ H, which contradicts what we derived above. Similarly, that
H t ↑b is improper leads to a contradiction. a

Corollary 5.6. For any Stone space X, U V (X) is a UV-space.

Proof. By Proposition 3.10, for any Stone space X, U V (X) is home-
omorphic to UV (Clop(X)), which is a UV-space by Theorem 5.4.1. a

§6. Morphisms and choice-free duality for BAs. To go beyond
representation to categorical duality, we introduce appropriate morphisms.
A spectral map [15] between spectral spaces X and X ′ is a map f : X → X ′

such that f−1[U ] ∈ CO(X) for each U ∈ CO(X ′), which implies that f is
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continuous. We combine this definition with the standard notion (in modal
logic) of a p-morphism between ordered sets (see, e.g., [8, p. 30]).

Definition 6.1. A UV-map between UV-spaces X and X ′ is a spectral
map f : X → X ′ that also satisfies the p-morphism condition:

if f(x) 6′ y′, then ∃y : x 6 y and f(y) = y′.

x f(x)

y′

x

∃y

f(x)

y′

⇒

Figure 1. The p-morphism condition of UV-maps.

Remark 6.2. A UV-map, like any continuous map, preserves the spe-
cialization order: if x 6 y, then f(x) 6 f(y).

Fact 6.3. Let P and P ′ be partial orders, and let f : P → P ′ be an order-
preserving map satisfying the p-morphism condition. If U ∈ RO(P ′), then
f−1[U ] ∈ RO(P ) (where we regard P, P ′ as spaces given by their upset
topologies).

Proof. To see that f−1[U ] ∈ Up(P ), suppose x ∈ f−1[U ] and x 6 y.
Then f(x) ∈ U , and since f is order-preserving, f(x) 6′ f(y), so U ∈
Up(P ′) implies f(y) ∈ U and hence y ∈ f−1[U ]. Now to see that f−1[U ] ∈
RO(P ), suppose x 6∈ f−1[U ], so f(x) 6∈ U . Then since U ∈ RO(P ′), there
is a y′ >′ f(x) such that for all z′ >′ y′, we have z′ 6∈ U . It follows by
the p-morphism condition that there is a y such that x 6 y and f(y) = y′.
Then for any z such that y 6 z, we have f(y) 6′ f(z) and hence y′ 6′ f(z),
which implies f(z) 6∈ U by our reasoning above, so z 6∈ f−1[U ]. Thus, we
have shown that if x 6∈ f−1[U ], then there is a y > x such that for all z > y,
z 6∈ f−1[U ]. By (4), this completes the proof that f−1[U ] ∈ RO(P ). a

From Fact 6.3 and the definition of UV-maps as special spectral spaces,
we have the following.
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Corollary 6.4. Let X and X ′ be UV-spaces and f : X → X ′ a UV-
map. Then f−1[U ] ∈ CORO(X) for every U ∈ CORO(X ′).9

Conversely, the condition that the inverse image of a CORO set is also
CORO (or simply CO) implies that f is a spectral map.

Fact 6.5. Let X and X ′ be UV-spaces. If f : X → X ′ is such that
f−1[U ] ∈ CO(X) for every U ∈ CORO(X ′), then f is a spectral map.

Proof. Suppose f : X → X ′ satisfies the assumption, and U ∈ CO(X ′).
By Proposition 5.5.2, U is a finite union

⋃
i∈I
Ui of sets Ui ∈ CORO(X ′).

Then f−1[U ] = f−1[
⋃
i∈I
Ui] =

⋃
i∈I
f−1[Ui]. By the assumption, f−1[Ui] ∈

CO(X), so f−1[U ] is a finite union of compact opens and is therefore com-
pact open. Thus, f is a spectral map. a

The following simple lemma is also useful.

Lemma 6.6. Let X and Y be spectral spaces and f : X → Y . If for
each set U in some subbasis for Y , we have f−1[U ] ∈ CO(X), then f is a
spectral map.

Proof. By definition, every open set is a union of finite intersections of
subbasic sets. Thus, every compact open set V is a finite union V1∪· · ·∪Vn
of finite intersections of subbasic sets. Then since

f−1[V ] = f−1[V1 ∪ · · · ∪ Vn] = f−1[V1] ∪ · · · ∪ f−1[Vn],

we have that f−1[V ] is compact open if each f−1[Vi] is compact open. Now
each Vi is U1 ∩ · · · ∩ Un for some subbasic sets U1, . . . , Un. Then since

f−1[Vi] = f−1[U1 ∩ · · · ∩ Un] = f−1[U1] ∩ · · · ∩ f−1[Un],

we have that f−1[Vi] is compact open if each f−1[Uj ] is compact open. By
assumption, each f−1[Uj ] is compact open, so we are done. a

One can easily check that UV-spaces with UV-maps form a category. We
now prove the promised categorical duality.

theorem 6.7. The category of UV-spaces with UV-maps is dually equiv-
alent to the category of Boolean algebras with Boolean homomorphisms.

Proof. Suppose h : A→ B is a BA homomorphism. Given F ∈ UV (B),
let h+(F ) = h−1[F ]. Then since h is a homomorphism, and F is a proper
filter in B, it follows that h+(F ) is a proper filter in A. Thus,

h+ : UV (B)→ UV (A).

9Cf. the notion of an R-map in [7], which is a map between spaces such that the

inverse image of each regular open set is regular open.
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We claim that h+ is a UV-map. First, to see that h+ is a spectral map,
it suffices by Lemma 6.6 to show that for each basic open â of UV (A), we
have h−1

+ [â] ∈ CO(UV (B)). Indeed,

h−1
+ [â] = {F ∈ UV (B) | h+(F ) ∈ â}

= {F ∈ UV (B) | h−1[F ] ∈ â}
= {F ∈ UV (B) | a ∈ h−1[F ]}
= {F ∈ UV (B) | h(a) ∈ F}

= ĥ(a),

and ĥ(a) is compact open by the proof of Proposition 3.12.1.
Next, we show that h+ satisfies the p-morphism condition:

if h+(F ) 6′ G′, then ∃G : F 6 G and h+(G) = G′.

If G′ ∈ UV (A) and h+(F ) ⊆ G′, we claim that the filter G generated
by h[G′] ∪ F is a proper filter. If not, then there are some c1, . . . , cn ∈
h[G′] such that −(c1 ∧ · · · ∧ cn) ∈ F . Since c1, . . . , cn ∈ h[G′], there are
some c′1, . . . , c

′
n ∈ G′ such that h(c′i) = ci, so −(h(c′1) ∧ · · · ∧ h(c′n)) ∈ F .

Then since h is a homomorphism, we have h(−(c1 ∧ · · · ∧ cn)) ∈ F , so
that −(c1 ∧ · · · ∧ cn) ∈ h−1[F ] = h+(F ), which with h+(F ) ⊆ G′ implies
−(c1 ∧ · · · ∧ cn) ∈ G′, which contradicts the fact that c′1, . . . , c

′
n ∈ G′ and

G′ is a proper filter. Thus, G is indeed a proper filter, and we have both
F ⊆ G and G′ ⊆ h−1[G] = h+(G). Finally, we claim that h+(G) ⊆ G′.10

For if c′ ∈ h+(G), so h(c′) ∈ G, then by definition of G there is a b′ ∈ G′
and a ∈ F such that h(b′) ∧ a ≤ h(c′), which implies a ≤ −h(b′) ∨ h(c′)
and hence a ≤ h(−b′ ∨ c′). Then since a ∈ F , we have h(−b′ ∨ c′) ∈ F , so
−b′ ∨ c′ ∈ h−1[F ] = h+(F ). Since h+(F ) ⊆ G′, it follows that −b′ ∨ c′ ∈
G′, which with b′ ∈ G′ implies c′ ∈ G′, which completes the proof that
h+(G) ⊆ G′. Thus, h+(G) = G′, so h+ satisfies the p-morphism condition.

Finally, it is easy to see that (·)+ preserves the identity and composition.
Thus, together UV (·) and (·)+ give us a contravariant functor from the
category of BAs with BA homomorphisms to the category of UV-spaces
with UV-maps.

In the other direction, suppose f : X → Y is a UV-map. Given U ∈
CORO(Y ), let f+(Y ) = f−1[Y ]. Then by Corollary 6.4,

f+ : CORO(Y )→ CORO(X).

We claim that f+ is a BA homomorphism. First, f+(U∧V ) = f−1[U∩V ] =
f−1[U ]∩ f−1[V ] = f+(U)∧ f+(V ). Second, since f is a UV-map, we have
that for all x ∈ X and U ∈ CORO(Y ), ⇑f(x)∩U = ∅ iff ⇑x ∩ f−1[U ] = ∅.

10Thanks to David Gabelaia and Mamuka Jibladze for pointing out this strengthening

of the original proof.
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It follows that f−1[int6(Y \ U)] = int6(X \ f−1[U ]) and hence f+(¬U) =
¬f+(U). It is also easy to see that (·)+ preserves the identity and compo-
sition. Thus, together CORO(·) and (·)+ give us a contravariant functor
from the category of UV-spaces with UV-maps to the category of BAs with
BA homomorphisms.

In Theorems 3.13 and 5.4.2 we showed that each BA A is isomorphic to
CORO(UV (A)) and each UV-spaceX is homeomorphic to UV (CORO(X)).

Finally, it is not difficult to check that the following diagrams commute
for any BA homomorphism h : A→ B and UV-map f : X → Y :

A

CORO(UV (A))

B

CORO(UV (B))

h

(h+)+

X

UV (CORO(X))

Y

UV (CORO(Y ))

f

(f+)+

This completes the proof. a

§7. The hyperspace approach and the localic approach. In this
section, we relate the hyperspace approach to choice-free duality using UV-
spaces to the localic approach using Stone locales.

Recall that a locale is a complete lattice L satisfying the join-infinite
distributive law for each a ∈ L and Y ⊆ L:

a ∧
∨
Y =

∨
{a ∧ y | y ∈ Y }.

The collection of open sets of any space ordered by ⊆ is a locale. In point-
free topology, it is locales rather than spaces that are the basic objects. If
we ignore choices of signature, then a lattice is a locale iff it is a complete
Heyting algebra. For more information on locales, see, e.g., [21, 25].

A locale is compact if
∨
Y = 1 implies

∨
Y0 = 1 for some finite Y0 ⊆

Y . A locale is zero-dimensional if each element of the locale is a join of
complemented elements, where an element a is complemented if there exists
an element b such that a ∧ b = 0 and a ∨ b = 1.
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Definition 7.1. A Stone locale is a compact zero-dimensional locale.

The name ‘Stone locale’ is justified by the fact that the locale of any Stone
space is a Stone locale, and assuming the Boolean Prime Ideal Theorem,
every Stone locale L is the locale of opens of a Stone space, namely the
Stone dual of the BA of complemented elements of L.

As mentioned in Section 2, Stone locales provide another kind of choice-
free Stone duality for BAs. A proof of the following may be found in [5].

theorem 7.2. The category of Stone locales with localic maps11 is dually
equivalent to the category of BAs with Boolean homomorphisms.

The key to Theorem 7.2 is the following correspondence.

Lemma 7.3.

1. For any BA A, (Filt(A),⊆) is a Stone locale.
2. L is a Stone locale iff L is isomorphic to (Filt(Z(L)),⊆) where Z(L)

is the Boolean algebra of complemented elements of L.

Proof. (sketch) Part 1 is straightforward to check. For part 2, the
right-to-left direction follows from part 1. For the left-to-right direction,
the isomorphism sends a ∈ L to ↑a ∩ Z(L) (see [5]). a

We can characterize UV-spaces as the result of putting an appropriate
topology on the (non-maximum) elements of a Stone locale. Given a Stone
locale L, just as Johnstone [21, § 4.1] defines the Vietoris space of L, we
may define the upper Vietoris space of L. The starting observation is that
in defining the upper Vietoris space of a Stone space X, instead of taking
the points of the new space to be the nonempty closed sets of X, we can
take the points to be the complements of such sets, i.e., the open sets of X
not equal to X. Then for U ∈ Ω(X), instead of defining

2U = {F ∈ F(X) | F ⊆ U},
we define

�U = {V ∈ Ω(X) \ {X} | V c ⊆ U}
= {V ∈ Ω(X) \ {X} | U ∪ V = X}

and let the topology be generated by {�U | U ∈ Ω(X)}. With this change
of perspective, we can define the Vietoris space entirely in terms of the
locale Ω(X), motivating the following definition.

Definition 7.4. The upper Vietoris space of a Stone locale L is the
space whose set of points is L− = {x ∈ L | x 6= 1} and whose topology is
generated by the sets

�x = {y ∈ L− | x ∨ y = 1}, x ∈ L.
11For the definition of localic maps, see, e.g., [25, § II.2].
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Now suppose L is the Stone locale (Filt(A),⊆) for a BA A. The join
F ∨G of two filters F,G ∈ L is the filter generated by F ∪G, and the top
element 1 of L is the improper filter. Our UV (A) is exactly the topological
space based on L− with the topology generated by the sets

â = {F ∈ PropFilt(A) | a ∈ F}, a ∈ A.
We can now see that UV (A) is exactly the upper Vietoris space of the
Stone locale (Filt(A),⊆).

Proposition 7.5. Let L be the Stone locale of filters of a BA A. Then
the topology on L− generated by {�x | x ∈ L} is equal to the topology on
L− generated by {â | a ∈ A}.

Proof. Given a ∈ A, we have:

â = �↑−a.
For â ⊆ �↑−a, if F ∈ â, so F is a proper filter with a ∈ F , then clearly
F ∨ ↑−a, i.e., the filter generated by F ∪ ↑−a, is the improper filter, so
F ∈ �↑−a. For â ⊇ �↑−a, if F ∈ �↑−a, so F is a proper filter such that
the filter generated by F ∪ ↑−a is improper, then a ∈ F , so F ∈ â.

Given F ∈ L, we have:

�F =
⋃
{−̂a | a ∈ F}.

For the left-to-right inclusion, suppose G ∈ �F , so G is a proper filter such
that F ∨ G is the improper filter. Hence there is some a ∈ F such that
−a ∈ G, so that G ∈ −̂a and hence G ∈

⋃
{−̂a | a ∈ F}. From right to

left, suppose G ∈
⋃
{−̂a | a ∈ F}, so for some a ∈ F , G ∈ −̂a, which means

−a ∈ G. Then clearly F ∨G is the improper filter, so G ∈ �F . a
Combining Proposition 7.5 with Definitions 3.9 and 7.4, we have the

following as an immediate corollary.

Corollary 7.6. For any BA A, UV (A) is the upper Vietoris space of
the Stone locale (Filt(A),⊆).

We can now justify our choice of the terminology ‘UV-space’ with the
following choice-free characterization.

theorem 7.7. X is a UV-space iff X is homeomorphic to the upper
Vietoris space of a Stone locale.

Proof. Suppose X is a UV-space. Then by Theorem 5.4.2, X is home-
omorphic to UV (CORO(X)). By Corollary 7.6, UV (CORO(X)) is the
upper Vietoris space of the Stone locale (Filt(CORO(X)),⊆). Thus, X is
homeomorphic to the upper Vietoris space of a Stone locale.

Conversely, suppose X is homeomorphic to the upper Vietoris space of a
Stone locale L. By Lemma 7.3.2, L is isomorphic to (Filt(Z(L)),⊆). Thus,
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X is homeomorphic to the upper Vietoris space of (Filt(Z(L)),⊆), which
is equal to UV (Z(L)) by Corollary 7.6, which is a UV-space by Theorem
5.4.1. Thus, X is a UV-space. a

Theorem 7.7 is a choice-free point-free analogue of the statement that X
is a UV-space iff X is homeomorphic to U V (Y ) for a Stone space Y . The
left-to-right direction of that statement assumes the Boolean Prime Ideal
Theorem (see Section 10.1). But by switching from Stone spaces to Stone
locales, one obtains Theorem 7.7 without choice.

Remark 7.8. For a Stone locale L, in addition to defining the Vietoris
space of L, Johnstone [21, § 4.1] defines the Vietoris locale of L, also known
as the Vietoris powerlocale of L.12 This is a purely localic construction,
and the terminology is justified by the fact that the space of points of the
Vietoris locale of L is homeomorphic to the Vietoris space of L. Similarly,
one can give a purely localic construction of the upper Vietoris locale of L,
also known as the upper powerlocale of L [37, 38], such that its space of
points is homeomorphic to the upper Vietoris space of L.

Figure 2 below relates the different constructions we have discussed,
viewed as ways of constructing the dual UV-space of a given BA.

§8. Duality dictionary. In this section, we explain the dictionary in
Table 1 for translating between BA notions and UV notions.

8.1. Filters and ideals. For a filter F and ideal I in a BA A, we
define:

η(F ) =
⋂
{â | a ∈ F};

ζ(I) =
⋃
{â | a ∈ I}.

Fact 8.1. Let A be a BA and X its dual UV-space. The map η is a dual
isomorphism between the poset of proper filters of A (ordered by inclusion)
and the poset of principal upsets in the specialization order of X (ordered
by inclusion).

Proof. Given a filter F in A, we have

η(F ) =
⋂
{â | a ∈ F}

= {F ′ ∈ UV (A) | ∀a ∈ F : F ′ ∈ â}
= {F ′ ∈ UV (A) | ∀a ∈ F : a ∈ F ′}
= {F ′ ∈ UV (A) | F ⊆ F ′}
= ⇑F,

12Johnstone studies these constructions for any compact regular locale L, but here

we need only consider Stone locales.
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Figure 2. Routes to the dual UV-space of a BA and back.

where we recall that ⇑F = {G ∈ X | F 6 G}. By the same argument, any
principal upset ⇑F in the specialization order of the UV-space is equal to
η(F ). Finally, it is clear that F ⊆ F ′ iff η(F ) ⊇ η(F ′). a

Fact 8.2. Let A be a BA and X its dual UV-space. The map ζ is an
isomorphism between the poset of ideals of A (ordered by inclusion) and
(ORO(X),⊆).

Proof. First, we show that for any ideal I in A, we have ζ(I) ∈
ORO(X). The set ζ(I) is a union of basic opens and hence is open. We
claim that ζ(I) is also an RO set. To see that it is an 6-upset, if F ∈ ζ(I),
so for some a ∈ I, we have F ∈ â and hence a ∈ F , then for any F ′ ⊇ F , we
have a ∈ F ′ and hence F ′ ∈ â, so F ′ ∈ ζ(I). Then to see that ζ(I) is an RO
set, suppose F 6∈ ζ(I), so for all a ∈ I, F 6∈ â and hence a 6∈ F . Let F ′ be
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BA UV Stone

BA UV-space Stone space
homomorphism UV-map continuous map
filter ⇑x, x ∈ X closed set
ideal U ∈ ORO(X) open set
principal filter U ∈ CORO(X) clopen set
principal ideal U ∈ CORO(X) clopen set
maximal filter {x}, x ∈ Max6(X) {x}, x ∈ X
maximal ideal X \ ⇓x, x ∈ Max6(X) X \ {x}, x ∈ X
normal ideal U ∈ RO(X) U ∈ RO(X)
relativization subspace U ∈ CORO(X) subspace U ∈ Clop(X)
complete algebra complete UV-space ED Stone space
atom isolated point isolated point
atomless algebra Xiso = ∅ Xiso = ∅
atomic algebra cl(Xiso) = X cl(Xiso) = X
homomorphic image subspace induced by ⇑x, x ∈ X subspace induced by closed set
subalgebra image under UV-map image under continuous map
direct product UV-sum disjoint union
canonical extension RO(X) ℘(X)
MacNeille completion RO(X) RO(X)

Table 1. Dictionary for BA, UV, and Stone.

the filter generated by F ∪{−a | a ∈ I}. We claim that F ′ is proper. If not,
then there are b ∈ F and a1, . . . , an ∈ I such that b ∧−a1 ∧ · · · ∧ −an = 0,
so b ≤ a1∨· · ·∨an. Then since F is a filter, b ∈ F implies a1∨· · ·∨an ∈ F .
But since I is an ideal, a1, . . . , an ∈ I implies a1 ∨ · · · ∨ an ∈ I and hence
a1 ∨ · · · ∨ an 6∈ F by our choice of F . From this contradiction, we conclude
that F ′ is proper. Then since −a ∈ F ′ for each a ∈ I, it follows that for
any proper filter F ′′ ⊇ F ′, we have F ′′ 6∈ ζ(I). This shows that ζ(I) is an
RO set by (4). This in turn completes the proof that ζ(I) ∈ ORO(X),
and it is easy to see that I ⊆ I ′ iff ζ(I) ⊆ ζ(I ′).

Finally, to see that f is surjective, given any ORO subset U of UV (A), by
the proof of Theorem 3.13 we have U =

⋃
{â | â ⊆ U}. We claim that the

set I = {a | â ⊆ U} is an ideal in A. If a ∈ I, so â ⊆ U , then for any b ≤ a,

we have b̂ ⊆ â and hence b̂ ⊆ U , so b ∈ I. Finally, if a, b ∈ I, so â, b̂ ⊆ U and

hence â∪b̂ ⊆ U , then we have int6(cl6(â∪b̂)) ⊆ int6(cl6(U)). Since U is an

RO set, we have int6(cl6(U)) = U , and then since int6(cl6(â∪ b̂)) = â ∨ b,
it follows that â ∨ b ⊆ U and hence a ∨ b ∈ I. Thus, I is an ideal, and
clearly ζ(I) = U . a

Fact 8.3. Let A be a BA and X its dual UV-space. The restriction of
η to principal filters is a dual isomorphism between the poset of principal
filters of A (ordered by inclusion) and (CORO(X),⊆).

Proof. The map ↑a 7→ â is the dual isomorphism, using the fact from
Theorem 3.13 that â ∈ CORO(UV (A)). a
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Fact 8.4. Let A be a BA and X its dual UV-space. The restriction of
ζ to principal ideals is a dual isomorphism between the poset of principal
ideals of A (ordered by inclusion) and (CORO(X),⊆).

Proof. The map ↓a 7→ â is the dual isomorphism. a

Fact 8.5. Let A be a BA and X its dual UV-space. The restriction of η
to maximal filters is a bijection between the collection of maximal filters of
A and the collection of singleton sets {x} for x ∈ Max6(X).

Proof. Since the specialization order 6 of X is the inclusion order ⊆
on proper filters of A, the elements of Max6(X) are exactly the maximal
filters of A. By Fact 8.1, for any filter F , η(F ) = ⇑F , so if F is a maximal
filter, then η(F ) = ⇑F = {F}. a

Fact 8.6. Let A be a BA and X its dual UV-space. The restriction of ζ
to maximal ideals is a bijection between the collection of maximal ideals of
A and the collection of sets X \ ⇓x for x ∈ Max6(X).

Proof. If I is a maximal ideal in A, then the complement F of I is
a maximal filter in A and hence an element of Max6(X). We claim that
ζ(I) =

⋃
{â | a ∈ I} = X \ ⇓F . For the ⊆ inclusion, if G ∈ ζ(I), then

for some a ∈ I, we have G ∈ â and hence a ∈ G, which implies G 6⊆ F .
Conversely, if G ∈ X \ ⇓F , then G 6⊆ F , so there is an a ∈ G such that
a 6∈ F . Thus, we have an a ∈ I such that G ∈ â and hence G ∈ ζ(I). a

In Section 8.7 we will prove a correspondence between the normal ideals
of A and sets in RO(UV (A)).

8.2. Relativization. As one would expect by analogy with standard
Stone duality, the operation on a UV-space dual to relativizing a BA to an
element is the operation of taking a CORO subspace of a UV-space.

Proposition 8.7. Let X be a UV-space. If U ∈ CORO(X), then U
with the subspace topology is a UV-space.

Proof. It is well known that every compact open subspace of a spectral
space is again spectral.13 Thus, since X is a spectral space, so is the
subspace induced by U . We denote the interior and closure operations
given by the restriction of 6 to U by intU6 and clU6, respectively. It is easy

13This fact does not use any choice. To see that an open subspace of X is sober,
suppose U is such a subspace. To prove that U is sober, it suffices to show (see [25, p. 2])

that any open V ( U is meet-irreducible iff it is the complement of the closure of a point.

Let V be an open proper subset of U , and suppose V is meet-irreducible, so for all open
A,B ⊆ U , if A ∩ B ⊆ V , then A ⊆ V or B ⊆ V . But then note that V is also a meet-

irreducible proper open subset of X. So by the sobriety of X, we have V = X \ cl{x}
for some x ∈ X. Now if x ∈ X \ U and hence cl{x} ⊆ X \ U , then together V ( U and

V = X \ cl{x} imply U = V , a contradiction. Thus, x ∈ U and V = U \ clU{x}.
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to check that CO(U) = {V ∩ U | V ∈ CO(X)}. We will now show that
CORO(U) = {V ′ ∩ U | V ′ ∈ CORO(X)}. Let V ⊆ U . We first prove that

V ∈ CORO(U) iff V ∈ CORO(X).(12)

Let V ∈ CORO(U). Then clearly V ∈ CO(X). We will show that
V ∈ RO(X). Since V is open in U , it is open in X. So V is an 6-upset, and
V ⊆ int6cl6(V ). Now suppose x ∈ int6cl6(V ). Then for each y ∈ X with
x 6 y, there is z ∈ X with y 6 z and z ∈ V , which with V ⊆ U implies
z ∈ U . Thus, x ∈ int6cl6(U), which implies x ∈ U since U ∈ RO(X).

Together x ∈ int6cl6(V ) and x ∈ U imply x ∈ intU6cl
U
6(V ), which implies

x ∈ V since V ∈ RO(U). Thus, int6cl6(V ) ⊆ V , so V ∈ RO(X).
Conversely, suppose V ∈ CORO(X). Then clearly V ∈ CO(U). To show

that V ∈ RO(U), suppose x ∈ U but x 6∈ V . Then since V ∈ RO(X),
there is a y ∈ X such that (a) x 6 y and (b) for all z ∈ X with y 6 z,
we have z 6∈ V . Since U is an 6-upset with x ∈ U , (a) implies y ∈ U . In
addition, (b) implies that for all z ∈ U with y 6 z, we have z 6∈ V . Thus,
we have shown that if x 6∈ V , then there is a y ∈ U such that x 6 y and
for all z ∈ U with y 6 z, we have z 6∈ V . Hence V ∈ RO(U).

The left-to-right direction of (12) yields CORO(U) ⊆ CORO(X). Now
let V ′ ∈ CORO(X). Then V ′ ∩ U ∈ CORO(X) and V ′ ∩ U ⊆ U , so
V ′ ∩ U ∈ CORO(U) by the right-to-left direction of (12). Therefore we
have proved that CORO(U) = {V ′ ∩ U | V ′ ∈ CORO(X)}.

Next, we show that if V ∈ CO(U), then intU6(U \ V ) ∈ CO(U). Note

that for each W ⊆ U , we have intU6(W ) = U ∩ int6((X \ U) ∪ W ). So

intU6(U\V ) = U∩int6((X\U)∪(U\V )) = U∩int6(X\V ). Since X is a UV-
space, int6(X \V ) ∈ CORO(X). Then as U ∈ CO(X) and CO(X) is closed

under finite intersections, intU6(U \ V ) ∈ CO(X). So intU6(U \ V ) ∈ CO(U).
Finally, let F be a filter in CORO(U). Let F ′ be the filter in CORO(X)

generated by F . Then F ′ = CORO(x) for some x ∈ X. But then x ∈ V
for each V ∈ F . So x ∈ U and F = CORO(x). Thus, U is a UV-space. a

Proposition 8.8. Let X be a UV-space. For any U ∈ CORO(X), the
relativization of the BA CORO(X) to U is the dual of the subspace of X
induced by U .

Proof. The proposition follows from two facts. First, by Proposition
8.7, the subspace of X induced by U is a UV-space, so by Theorem 5.4.2,
U is homeomorphic to UV (CORO(U)). Second, CORO(U) = {V ′ ∩ U |
V ′ ∈ CORO(X)} is the relativization of the BA CORO(X) to U . a

8.3. Completeness. We now characterize the UV-duals of complete
BAs.

Definition 8.9. A UV-space X is complete iff int(cl(U)) ∈ CORO(X)
for every open U .
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Proposition 8.10. Let A be a BA and X its dual UV-space.

1. If {Ui}i∈I ⊆ CORO(X), then {Ui}i∈I has a meet in CORO(X) iff

int
⋂
i∈I
Ui ∈ CORO(X),

in which case ∧
i∈I
Ui = int

⋂
i∈I
Ui.

2. If {Ui}i∈I ⊆ CORO(X), then {Ui}i∈I has a join in CORO(X) iff

int(cl
⋃
i∈I
Ui) ∈ CORO(X),

in which case ∨
i∈I
Ui = int(cl

⋃
i∈I
Ui).

3. A is complete iff X is complete.

Proof. For part 1, if int
⋂
i∈I
Ui ∈ CORO(X), then clearly int

⋂
i∈I
Ui is the

greatest lower bound in CORO(X) of {Ui}i∈I . Conversely, if
∧
i∈I
Ui exists in

CORO(X), then we claim that
∧
i∈I
Ui = int

⋂
i∈I
Ui. By the proof of Theorem

3.13, for each i ∈ I, we have Ui = âi for some ai ∈ A, so
∧
i∈I
Ui =

∧
i∈I
âi.

Since a 7→ â is an isomorphism from A to CORO(X), we have
∧
i∈I
âi =

∧̂
i∈I
ai.

Thus, it suffices to show that
∧̂
i∈I
ai = int

⋂
i∈I
âi. Suppose F ∈

∧̂
i∈I
ai. Then

since
∧̂
i∈I
ai ⊆

⋂
i∈I
âi and

∧̂
i∈I
ai is open, we have F ∈ int

⋂
i∈I
âi. For the reverse

inclusion, suppose F ∈ int
⋂
i∈I
âi, so there is a U ∈ CORO(X) such that

F ∈ U ⊆
⋂
i∈I
âi. Then U = b̂ for some b ∈ A, and b̂ ⊆

⋂
i∈I
âi implies that b

is a lower bound of {ai}i∈I in A, so b ≤
∧
i∈I
ai. Then we have the following

chain of implications:

F ∈ b̂⇒ b ∈ F ⇒
∧
i∈I
ai ∈ F ⇒ F ∈

∧̂
i∈I
ai.

For part 2, if
∨
i∈I
Ui exists in CORO(X), then we claim that

∨
i∈I
Ui =

int(cl
⋃
i∈I
Ui). By the proof of Theorem 3.13, for each i ∈ I, we have Ui = âi

for some ai ∈ A, so
∨
i∈I
Ui =

∨
i∈I
âi. Since a 7→ â is an isomorphism from
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A to CORO(X), we have
∨
i∈I
âi =

∨̂
i∈I
ai. Thus, it suffices to show that∨̂

i∈I
ai = int(cl

⋃
i∈I
âi). For the right-to-left inclusion, since

⋃
i∈I
âi ⊆

∨̂
i∈I
ai and∨̂

i∈I
ai ∈ CORO(X) = CRO(X) (by Corollary 4.2), we have int(cl

⋃
i∈I
âi) ⊆

int(cl
∨̂
i∈I
ai) =

∨̂
i∈I
ai. For the left-to-right inclusion, since

∨̂
i∈I
ai is open, it

suffices to show
∨̂
i∈I
ai ⊆ cl

⋃
i∈I
âi. Consider any F ∈

∨̂
i∈I
ai and basic open

neighborhood U of F , so U = b̂ for some b ∈ A. Then since F ∈ b̂ and

F ∈
∨̂
i∈I
ai, we have b ∈ F and

∨
i∈I
ai ∈ F , so b ∧

∨
i∈I
ai =

∨
i∈I

(b ∧ ai) ∈ F .14

Since F is a proper filter, it follows that for some i ∈ I, b ∧ ai 6= 0 and

hence b̂ ∩ âi 6= ∅. Thus, b̂ ∩
⋃
i∈I
âi 6= ∅. This shows that F ∈ cl

⋃
i∈I
âi.

For part 3, suppose X is complete. For any {ai}i∈I ⊆ A, the set
⋃
i∈I
âi

is open, so by the completeness of X, we have int(cl
⋃
i∈I
âi) ∈ CORO(X),

in which case
∨
i∈I
ai exists by part 2. Conversely, suppose A is complete

and U is an open set in X. Then by Definition 5.1.1, we have that
U =

⋃
{V ∈ CORO(X) | V ⊆ U}. Since A is complete, so is the iso-

morphic CORO(X), so
∨
{V ∈ CORO(X) | V ⊆ U} exists. Then by part

2,
∨
{V ∈ CORO(X) | V ⊆ U} = int(cl

⋃
{V ∈ CORO(X) | V ⊆ U}),

so int(cl
⋃
{V ∈ CORO(X) | V ⊆ U}) ∈ CORO(X), i.e., int(clU) ∈

CORO(X). Hence X is complete. a

Remark 8.11. In contrast to the equality in Proposition 8.10.2 for ar-
bitrary joins, we observed in Proposition 5.3 that for finite joins, we have
U1 ∨ · · · ∨ Un = int6(cl6(U1 ∪ · · · ∪ Un)). However, we cannot assert this
equality for arbitrary joins, as it is refutable in ZF + Boolean Prime Ideal
Theorem. To see this, suppose F is a non-principal ultrafilter. Then∧
F = 0. For if b is a lower bound of F , then since F is non-principal,

b 6∈ F , and then since F is an ultrafilter, −b ∈ F . But then b ≤ −b,
so b = 0. Now since

∧
F = 0, we have

∨
{−a | a ∈ F} = 1, so∨

{−a | a ∈ F} ∈ F . Thus, we have F ∈
∨
{−a | a ∈ F}
∧

=
∨
{−̂a | a ∈ F},

yet clearly F 6∈ int6(cl6
⋃
{−̂a | a ∈ F}); since F is an ultrafilter, it is max-

imal in 6, so F ∈ int6(cl6
⋃
{−̂a | a ∈ F}) implies F ∈

⋃
{−̂a | a ∈ F},

contradicting the fact that F is a proper filter.

14Here we use the join-infinite distributive law for BAs, which says that if
∨
i∈I

ai exists,

then
∨
i∈I

(b ∧ ai) exists and b ∧
∨
i∈I

ai =
∨
i∈I

(b ∧ ai) [11, p. 47, Lem. 3].
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Lemma 8.12. If X is a complete UV-space and U ∈ CORO(X), then
the subspace induced by U is a complete UV-space.

Proof. By Proposition 8.7, U with the subspace topology is a UV-
space. To show that CORO(U) is complete, it suffices to show that all
meets exist. Thus, by Proposition 8.10.1, it suffices to show that for any
{Ui}i∈I ⊆ CORO(U), we have intU

⋂
i∈I Ui ∈ CORO(U). We show that

intU
⋂

i∈I Ui = U ∩ int
⋂

i∈I Ui. Suppose x ∈ intU
⋂

i∈I Ui. Then there is an
open set Ux ⊆ U such that x ∈ Ux and Ux ⊆ Ui for each i ∈ I. But then
x ∈ U ∩ int

⋂
i∈I Ui. Conversely, if x ∈ U ∩ int

⋂
i∈I Ui, then x ∈ U and

there is an open set Vx such that x ∈ Vx and Vx ⊆ Ui for each i ∈ I. But
then Vx ⊆ U and so x ∈ intU

⋂
i∈I Ui.

Therefore, by Proposition 8.10.1, intU (
⋂

i∈I Ui) is the intersection of two

CORO(U) sets and thus, by Proposition 8.7, intU
⋂

i∈I Ui ∈ CORO(U). a
8.4. Atoms. Recall that an isolated point of a space X is an x ∈ X

such that {x} is open.

Proposition 8.13. The map a 7→ ↑a is a bijection from the atoms of a
BA to the isolated points of its dual UV-space.

Proof. If a is an atom of the BA A, then clearly â = {↑a}, and â is open
in UV (A), so ↑a is an isolated point. If a 6= b, then ↑a 6= ↑b, so the map
is injective. Finally, to see that the map is surjective, if F is an isolated
point, then {F} is open and hence {F} ∈ CORO(UV (A)) by Definition
5.1.1. Thus, by the proof of Theorem 3.13, there is some a ∈ A such that
â = {F}, which implies that a is an atom. For if a is not an atom, then
there is a b < a with b 6= 0, in which case the proper filters ↑b and ↑a are
distinct and belong to â. Since a is an atom, â = {↑a}, so F = ↑a. a

Corollary 8.14. A BA is atomless iff the set of isolated points of its
dual UV-space is empty.

Let Xiso be the set of all isolated points of the space X and At(A) the
set of all atoms of the BA A.

Proposition 8.15. Let A be a BA and X its dual space. The following
are equivalent:

1. A is atomic;
2. int(clXiso) = X;
3. the set of isolated points is dense in X, i.e., clXiso = X.

Proof. 1 ⇒ 2. If A is atomic, then 1 =
∨
{a ∈ A | a ∈ At(A)}. Then

X = 1̂ =
∨
{a ∈ A | a ∈ At(A)}
∧

=
∨
{â ∈ A | a ∈ At(A)} = int(cl

⋃
{â | a ∈

At(A)}) = int(clXiso) by Propositions 8.10.2 and 8.13.
2 ⇒ 3. Since int(clXiso) ⊆ clXiso, int(clXiso) = X implies clXiso = X.
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3 ⇒ 1. We need to show that 1 =
∨
{a ∈ A | a ∈ At(A)}. In dual terms

this means that X = 1̂ =
∨
{a ∈ A | a ∈ At(A)}
∧

. By Propositions 8.10.2

and 8.13, we have
∨
{a ∈ A | a ∈ At(A)}
∧

= int(clXiso). As cl(Xiso) = X,
we have int(clXiso) = intX = X. a

8.5. Subalgebras and homomorphic images. We now characterize
subalgebras and homomorphic images of BAs in terms of UV-spaces.

Definition 8.16. Let X and Y be UV-spaces. An injective UV map
f : X → Y is a UV-embedding if for every U ∈ CORO(X) there is a
V ∈ CORO(Y ) such that f [U ] = f [X] ∩ V .

Fact 8.17. Let A and B be BAs and h : A → B a homomorphism. Let
h+ : UV (B)→ UV (A) be the UV-map dual to h. Then:

1. if h is injective, then h+ is surjective;
2. if h is surjective, then h+ is a UV-embedding.

Proof. For part 1, consider a proper filter F ∈ UV (A), and let G =
{b ∈ A | ∃a ∈ h[F ] : a ≤ b}. We show that G is a proper filter such that
h−1[G] = F . Suppose 0B ∈ G. Then 0B ∈ h[F ], so there is an a ∈ F such
that h(a) = 0B. As F is proper, a 6= 0A, which is a contradiction as h is
injective and h(0A) = 0B. Now if c, d ∈ G, then there are a, b ∈ F such
that h(a) ≤ c and h(b) ≤ d. Since F is a filter, a, b ∈ F implies a ∧ b ∈ F ,
so h(a ∧ b) ∈ h[F ]. Then since h(a ∧ b) = h(a) ∧ h(b) ≤ c ∧ d, we have
c ∧ d ∈ G. It is also obvious that G is an upset. Thus, G is a proper filter.

We now show that h−1[G] = F . Clearly F ⊆ h−1[G]. Suppose a ∈
h−1[G]. Then h(a) ∈ G, so there is a b ∈ F such that h(b) ≤ h(a). If a /∈ F ,
then b � a and so a∧b 6= b. On the other hand, h(a∧b) = h(a)∧h(b) = h(b),
which is a contradiction as h is injective. Therefore, h−1[G] = F . As
h+(G) = h−1[G], we obtain that h+ is a surjective UV-map.

For part 2, let F and G be proper filters in B such that F 6= G. Then
without loss of generality there is a b ∈ F such that b /∈ G. As h is
surjective there is an a ∈ A such that h(a) = b. Obviously, a ∈ h−1[F ] and
a /∈ h−1[G]. So h−1[F ] 6= h−1[G], implying that h+ is injective. Finally,
we check the UV-embedding condition. Each U ∈ CORO(UV (B)) is of the

form b̂ for some b ∈ B. Since h is surjective, there is an a ∈ A such that

h(a) = b, so h+ [̂b] = h+[ĥ(a)]. Now it suffices to show

h+[ĥ(a)] = h+[UV (B)] ∩ â.

From left to right, suppose F ∈ h+[ĥ(a)], so there is a G ∈ ĥ(a) such that

h+(G) = F . Since G ∈ ĥ(a), we have h(a) ∈ G. Since h+(G) = F , we have
h−1[G] = F . From h(a) ∈ G and h−1[G] = F , we have a ∈ F , so F ∈ â.
From right to left, suppose F ∈ h+[UV (B)] ∩ â. Since F ∈ h+[UV (B)],
there is a G ∈ UV (B) such that h+(G) = F and hence h−1[G] = F . Since
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F ∈ â, we have a ∈ F and hence h(a) ∈ G. Thus, G ∈ ĥ(a), which with

h+(G) = F implies F ∈ h+[ĥ(a)]. This completes the proof. a

Fact 8.18. Let X and Y be UV-spaces and f : X → Y a UV-map. Let
f+ : CORO(Y )→ CORO(X) be the homomorphism dual to h. Then:

1. if f is surjective, then f+ is injective;
2. if f is UV-embedding, then f+ is surjective.

Proof. For part 1, suppose for U, V ∈ CORO(Y ) that U 6= V . Suppose
y ∈ U \ V . Since f is surjective, there is an x ∈ X such that f(x) = y, so
x ∈ f−1[U ] = f+[U ] but x 6∈ f−1[V ] = f+(V ). Hence f+ is injective.

For part 2, suppose U ∈ CORO(X). Then since f is a UV-embedding,
there is a V ∈ CORO(Y ) such that f [U ] = f [X] ∩ V . Then f−1[f [U ]] =
f−1[f [X] ∩ V ] = f−1[f [X]] ∩ f−1[V ] = X ∩ f−1[V ] = f−1[V ]. Since f is
injective, f−1[f [U ]] = U . Hence U = f−1[V ] = f+[V ]. a

Corollary 8.19.

1. There is a one-to-one correspondence between subalgebras of a BA A
and images via onto UV-maps of its dual UV-space XA.

2. There is a one-to-one correspondence between homomorphic images of
a BA A and subspaces induced by principal upsets in the specialization
order of the dual UV-space XA.

Proof. Part 1 follows from Facts 8.17.1 and 8.18.1 and Theorem 6.7.
Since there is a one-to-one correspondence between homomorphic images

of A and filters of A, part 2 follows directly from Fact 8.1. However, we also
sketch a more direct argument. By Facts 8.17.2 and 8.18.2 and Theorem
6.7, there is a one-to-one correspondence between homomorphic images of
A and UV-embeddings into its dual XA. Let B be a homomorphic image
of A via h. Then h+ : XB → XA is a UV-embedding. First, since h+ is an
injective p-morphism, h+[XB] is a principal upset in the specialization order
of XA. Second, if Y is the subspace of XA induced by h+[XB], we claim
that XB and Y are homeomorphic via the bijection h+ : XB → Y . Since
h+ is a continuous map from XB to XA, it follows that h+ is a continuous
map from XB to Y , and since h+ is a UV-embedding from XB to XA, it
follows that h+ is an open map from XB to Y . a

8.6. Products. The operation on UV-spaces dual to taking direct prod-
ucts of BAs is the following.

Definition 8.20. The UV-sum of disjoint UV-spaces X and Y is the
space X©Y whose underlying set is X ∪Y ∪ (X×Y ) and whose topology
is generated by the collection of sets

U ∪ V ∪ (U × V )

for U ∈ CORO(X) and V ∈ CORO(Y ).
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The following lemma is helpful for visualizing UV-sums.

Lemma 8.21. Given UV-spaces X and Y with specialization orders 6X

and 6Y , respectively, the specialization order in X © Y is given by:

6X ∪ 6Y ∪
{〈〈x, y〉, x′〉 | x 6X x′} ∪ {〈〈x, y〉, y′〉 | y 6Y y′} ∪
{〈〈x, y〉, 〈x′, y′〉〉 | x 6X x′, y 6Y y′}.(13)

Proof. Suppose 〈z, z′〉 belongs to the set in (13), and z belongs to an
open set U ∪ V ∪ (U × V ) of X © Y . We must show that z′ also belongs
to the set. There are five cases. If z 6X z′ (resp. z 6Y z′), then z ∈ U
(resp. z ∈ V ), which with U ∈ CORO(X) (resp. V ∈ CORO(Y )) implies
z′ ∈ U (resp. z′ ∈ V ) and hence z′ ∈ U ∪V ∪(U×V ). On the other hand, if
z = 〈x, y〉, then 〈x, y〉 ∈ U × V , so x ∈ U and y ∈ V . Therefore, if x 6X z′

(resp. y 6Y z′), then z′ ∈ U (resp. z′ ∈ V ) and hence z′ ∈ U ∪V ∪ (U ×V ).
Similarly, if z′ = 〈x′, y′〉, and x 6X x′ and y 6Y y′, then x′ ∈ U and
y′ ∈ V , so z′ ∈ U × V . This completes the proof that z 6X©Y z′.

Conversely, suppose 〈z, z′〉 does not belong to the set in (13). Again
there are five cases. For example, if z, z′ ∈ X, it follows that z 66X z′, so
there is an open set U of X such that z ∈ U but z′ 6∈ U , and U is open in
X © Y , so z 66X©Y z′. Similarly, if z = 〈x, y〉 and z′ ∈ X, it follows that
x 66X z′, so there is an open set U of X such that x ∈ U but z′ 6∈ U . Thus,
〈x, y〉 ∈ U ∩ Y ∪ (U × Y ) but z′ 6∈ U ∪ Y ∪ (U × Y ), so 〈x, y〉 66X©Y z′.
The other cases are analogous. a

Example 8.22. For finite UV-spaces, the UV-sum is easily drawn. Fig-
ure 3 shows the UV-sum of the UV-duals of the four-element and two-
element BAs, 4 and 2 (recall Corollary 5.5.4). Solid lines indicate the
specialization order 6 in UV (4), so x 6 y1 and x 6 y2. Dashed lines
indicate the new part of the relation defined in Lemma 9.2. Note that
UV (4)© UV (2) = UV (4× 2) in line with Proposition 8.23.

Proposition 8.23. For any BAs A and B, UV (A)© UV (B) is homeo-
morphic to UV (A× B).

Proof. Given F ∈ UV (A × B), so that F is a proper filter in A × B,
we have that FA = {a | ∃b : 〈a, b〉 ∈ F} and FB = {b | ∃a : 〈a, b〉 ∈ F} are
filters in A and B, respectively, at least one of which is a proper filter. We
define a function h from UV (A× B) to UV (A)© UV (B) as follows:

h(F ) =


FA if FB is improper

FB if FA is improper

〈FA, FB〉 otherwise.
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UV (4)

x

y1 y2

UV (2)

z

UV (4)© UV (2)

UV (4× 2)

〈x, z〉

x 〈y1, z〉 〈y2, z〉

y1 y2 z

Figure 3. UV-sum of the UV-duals of the BAs 4 and 2.

We claim that h is a homeomorphism from UV (A×B) to UV (A)©UV (B).
Clearly h is injective. For surjectivity, suppose G ∈ UV (A)© UV (B). If
G ∈ UV (A), then for F = {〈a, b〉 | a ∈ G, b ∈ B} ∈ UV (A × B), we have
that G = FA and FB is improper, so G = h(F ). Similarly, if G ∈ UV (B),
then for F = {〈a, b〉 | a ∈ A, b ∈ G} ∈ UV (A×B), we have that G = FB and
FA is improper, so G = h(F ). Finally, if G = 〈GA, GB〉 for GA ∈ UV (A)
and GB ∈ UV (B), then GA×GB ∈ UV (A×B) and G = h(GA×GB), since
(GA ×GB)A = GA and (GA ×GB)B = GB. Thus, h is surjective.

To show that h is continuous, it suffices to show that the inverse image of
each basic open is open. By Definition 8.20, each basic open in UV (A)©
UV (B) is of the form U ∪ V ∪ (U × V ) for U ∈ CORO(UV (A)) and V ∈
CORO(UV (B)). By the proof of Theorem 3.13, U = â and V = b̂ for some

a ∈ A and b ∈ B, so our basic open in UV (A)© UV (B) is â ∪ b̂ ∪ (â× b̂).
Then we have:

h−1[â ∪ b̂ ∪ (â× b̂)] = h−1[â] ∪ h−1 [̂b] ∪ h−1[â× b̂]

= 〈̂a, 0〉 ∪ 〈̂0, b〉 ∪ 〈̂a, b〉,

so h−1[â ∪ b̂ ∪ (â× b̂)] is a union of basic opens in UV (A× B).

Finally, to see that h−1 is continuous, for any basic open set 〈̂a, b〉 of
UV (A× B), we have:

〈̂a, b〉 = {F ∈ PropFilt(A× B) | 〈a, b〉 ∈ F and FB improper} ∪
{F ∈ PropFilt(A× B) | 〈a, b〉 ∈ F and FA improper} ∪
{F ∈ PropFilt(A× B) | 〈a, b〉 ∈ F and FA, FB proper},

which implies

h[〈̂a, b〉] = â ∪ b̂ ∪ (â× b̂),

so that h[〈̂a, b〉] is basic open in UV (A)© UV (B). a
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Corollary 8.24. For any UV-spaces X and Y , X© Y is a UV-space.

Proof. By Theorem 5.4.2, X and Y are respectively homeomorphic
to UV (CORO(X)) and UV (CORO(Y )), which implies that X © Y is
homeomorphic to UV (CORO(X))©UV (CORO(Y )). By Proposition 8.23,
UV (CORO(X))©UV (CORO(Y )) is homeomorphic to UV (CORO(X)×
CORO(Y )), which is a UV-space by Theorem 5.4.1. Thus, by the two
homeomorphisms, X © Y is a UV-space. a

Corollary 8.25. For any UV-spaces X and Y , CORO(X©Y ) is iso-
morphic to CORO(X)× CORO(Y ).

Proof. Apply Proposition 8.23 and duality (Theorem 6.7). a

Remark 8.26. Another natural question is how one can characterize
products in the category of UV-spaces with UV-maps, which will be the
duals of coproducts in the category of BAs with BA homomorphisms. We
cannot characterize the product of UV-spaces X and Y as a topological
space based on the Cartesian product of the underlying sets of X and Y .
E.g., if we take the Cartesian product of two copies of the three-element set
underlying UV (4) (Figure 3), then we obtain a set with nine elements; this
cannot be the underlying set of any poset obtained from a BA by deleting
its top element, so by Corollary 5.5.4 it cannot be the underlying set of a
UV-space. We leave for future work the problem of characterizing products
in the category of UV-spaces, which is reminiscent of the open problem of
characterizing products in the category of Esakia spaces [9].

8.7. Completions. The canonical extension of a BA A, as defined in
[10], is the unique (up to isomorphism) complete BA B for which there is a
Boolean embedding e of A into B such that every element of B is a join of
meets of e-images of elements of A, and for any sets S and T of elements
of A, if

∧
e[S] ≤

∨
e[T ], then there are finite sets S′ ⊆ S and T ′ ⊆ T such

that
∧
S′ ≤

∨
T ′. It is shown in [17, § 5.6] that the canonical extension of

a BA A can be constructed without choice as the BA of all regular open
upsets in the poset of proper filters of A ordered by inclusion. Putting this
in terms of UV-spaces, we have the following.

theorem 8.27. Let A be a BA and X its dual UV-space. Then RO(X)
is (up to isomorphism) the canonical extension of A.

The MacNeille completion of a BA A is the unique (up to isomorphism)
complete BA B for which there is a Boolean embedding e of A into B such
that every non-minimum element of B is above the e-image of some non-
minimum element of A (see, e.g., [11, Ch. 25]). The MacNeille completion
of B may be constructed as the lattice of normal ideals of B ordered by
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inclusion; an ideal I of B is normal iff I = Iu`, where for any A ⊆ B, Au is
the set of upper bounds of A, and A` is the set of lower bounds of A.15

theorem 8.28. Let A be a BA and X its dual space. Then RO(X) is
(up to isomorphism) the MacNeille completion of A.

Proof. We show an order isomorphism between RO(X) and the set of
normal ideals of A ordered by inclusion. It suffices to define an inclusion-
preserving map r from normal ideals to RO(X) and an inclusion-preserving
map i from RO(X) to normal ideals such that i(r(I)) = I and r(i(U)) = U .

Suppose I is a normal ideal, so I = Iu`. Let r(I) :=
⋃
{ĉ | c ∈ I}. To

see that r(I) ∈ RO(X), let U :=
⋃
{−̂a | a ∈ Iu}. Then as in the proof of

Proposition 4.3, we have

U∗ =
⋃
{ĉ | ∀a ∈ Iu −a ∧ c = 0}

=
⋃
{ĉ | ∀a ∈ Iu c ≤ a}

=
⋃
{ĉ | c ∈ Iu`}

=
⋃
{ĉ | c ∈ I} = r(I).

Thus, r(I) ∈ RO(X). Clearly I ⊆ J implies r(I) ⊆ r(J).

In the other direction, suppose V ∈ RO(X). Let i(V ) = {−b | b̂ ⊆ V ∗}`.
It is easy to see that for any S ⊆ A, S` is a normal ideal, so i(V ) is a
normal ideal. Also observe that i is inclusion-preserving:

V ⊆ U
⇒ U∗ ⊆ V ∗

⇒ {−b | b̂ ⊆ U∗} ⊆ {−b | b̂ ⊆ V ∗}
⇒ {−b | b̂ ⊆ V ∗}` ⊆ {−b | b̂ ⊆ U∗}`

⇒ i(V ) ⊆ i(U).

15The MacNeille completion of a BA A can also be constructed as the BA of all
regular open upsets in the poset that results from deleting the bottom element of A and

reversing the restricted order [17, § 5.6].
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Next, observe:

i(r(I)) = i
(⋃
{ĉ | c ∈ I}

)
= {−b | b̂ ⊆

(⋃
{ĉ | c ∈ I}

)∗}`
= {−b | b̂ ⊆

⋃
{d̂ | ∀c ∈ I c ∧ d = 0}}`

= {−b | b̂ ⊆
⋃
{d̂ | ∀c ∈ I c ≤ −d}}`

= {−b | ↑b ∈
⋃
{d̂ | ∀c ∈ I c ≤ −d}`

= {−b | ∃d : b ≤ d and ∀c ∈ I c ≤ −d}`

= {−b | ∀c ∈ I c ≤ −b}`

= Iu` = I.

Finally, observe:

r(i(U)) = r({−b | b̂ ⊆ U∗}`)
=
⋃
{ĉ | c ∈ {−b | b̂ ⊆ U∗}`}.

=
⋃
{ĉ | ∀b (̂b ⊆ U∗ ⇒ c ≤ −b)}

=
⋃
{ĉ | ∀b (̂b ⊆ U∗ ⇒ b ∧ c = 0)}

= U∗∗ = U.

This completes the proof. a

§9. Example applications. In this section, we apply our duality to
prove some basic theorems about BAs in Propositions 9.1, 9.3, and 9.8.

9.1. Chains and antichains in BAs. By an antichain in a BA, we
mean a collection C of elements such that for all x, y ∈ C with x 6= y, we
have x ∧ y = 0.

Proposition 9.1. Every infinite BA contains infinite chains and infi-
nite antichains.

Proof. By duality, it suffices to show that in any infinite UV-space X,
there is an infinite descending chain U0 ) U1 ) . . . of sets from CORO(X),
as well as an infinite family of pairwise disjoint sets from CORO(X). For
this it suffices to show (?): for any n ∈ N, there is a descending chain U0 ⊇
U1 ⊇ · · · ⊇ Un of infinite sets from CORO(X) such that Ui ∩ ¬Ui+1 6= ∅
for each i ∈ n. For then by DC, there is an infinite descending chain
U0 ⊇ U1 ⊇ . . . of sets from CORO(X) with Ui∩¬Ui+1 6= ∅ for each i ∈ N,
in which case {U0 ∩ ¬U1, U1 ∩ ¬U2, . . . } is our antichain.

We prove (?) by induction. Let U0 = X. For the inductive step, since
Un is infinite and X is T0, there are x, y ∈ Un such that x 66 y. Then by
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the separation property of UV-spaces, there is a V ∈ CORO(X) such that
x ∈ V and y 6∈ V , which with y ∈ Un and Un, V ∈ RO(X) implies that
there is a z > y such that z ∈ Un ∩¬V . Since Un, V ∈ CORO(X), we have
Un∩V,Un∩¬V ∈ CORO(X) by Definition 5.1.1; and since z ∈ Un∩¬V and
x ∈ Un ∩ V , we have z ∈ Un ∩¬(Un ∩ V ) 6= ∅ and x ∈ Un ∩¬(Un ∩¬V ) 6=
∅. Thus, if Un ∩ V is infinite, then we can set Un+1 := Un ∩ V , and
otherwise we claim that Un ∩ ¬V is infinite, in which case we can set
Un+1 := Un ∩ ¬V . Since Un ∈ RO(X), we may regard Un as a separative
partial order. Given V ∈ RO(X), we have Un∩V,Un∩¬V ∈ RO(Un) and
Un∩¬V = ¬n(Un∩V ), where ¬n is the complement operation in RO(Un).
Then since Un is infinite, by Lemma 2.3 either Un ∩ V or ¬n(Un ∩ V ) is
infinite, as desired. a

9.2. Products of BAs. Before our second example application in Propo-
sition 9.3, we prove a preliminary lemma. Recall from Proposition 8.7 that
a subspace of a UV-space induced by a CORO set is also a UV-space.

Lemma 9.2. If X is a UV-space and U ∈ CORO(X), then X is homeo-
morphic to the UV-sum of the subspaces induced by U and ¬U , respectively.

Proof. By Corollary 5.5.3, (X,6) has a meet xuy for any two elements
x, y ∈ X. We define f : U © ¬U → X as follows: if z ∈ U ∪ ¬U , then
f(z) = z; otherwise z = 〈x, y〉 for x ∈ U and y ∈ ¬U , so we define
f(〈x, y〉) = xu y. That f is a bijection follows from Corollary 5.5.5. To see
that f is continuous, we show that the inverse image of each basic open is
open. Given V ∈ CORO(X), we have:

f−1[V ] = (U ∩ V ) ∪ (¬U ∩ V ) ∪ {〈x, y〉 | x ∈ U, y ∈ ¬U, x u y ∈ V }
= (U ∩ V ) ∪ (¬U ∩ V ) ∪ ((U ∩ V )× (¬U ∩ V )),

where we have used the fact that V is a filter with respect to u (Corollary
5.5.3). Since U∩V ∈ CORO(U) and ¬U∩V ∈ CORO(¬U), it follows from
the above equation and Definition 8.20 that f−1[V ] is open in U ©¬U .

Finally, to see that f−1 is continuous, each basic open of U ©¬U is of
the form V ∪ V ′ ∪ (V × V ′) for V ∈ CORO(U) and V ′ ∈ CORO(¬U) by
Definition 8.20. Then V, V ′ ∈ CORO(X) and

f [V ∪ V ′ ∪ (V × V ′)] = f [V ] ∪ f [V ′] ∪ f [V × V ′]
= V ∪ V ′ ∪ {x u y | x ∈ V, y ∈ V ′}
= V ∨ V ′ ∈ CORO(X),

where the last equality uses Corollary 5.5.6. a
Proposition 9.3. Any complete BA is isomorphic to the product of a

complete and atomless BA and a complete and atomic BA.

Proof. By duality, it suffices to show that any complete UV-space X is
the UV-sum of a complete UV-space with no isolated points and a complete
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UV-space in which the isolated points form a dense subset. Since X is
complete, U := int(clXiso) ∈ CORO(X). Form the subspaces induced
by U and ¬U . By Lemma 9.2, X is homeomorphic to the UV-sum of
these subspaces. By Lemma 8.12, both subspaces are complete UV-spaces.
Clearly (¬U)iso ⊆ Xiso, and Xiso = Uiso, which with ¬U ∩ U = ∅ implies
(¬U)iso = ∅. Thus, the subspace induced by ¬U has no isolated points.
Finally, in the subspace induced by U , we have

intUclUUiso = U ∩ int(clUiso) = U ∩ U = U,

which implies clUUiso = U by Proposition 8.15. a
9.3. Subalgebras of BAs. Let Bn be the finite Boolean algebra with

n atoms. As our final example, we will prove using our duality that every
infinite BA contains subalgebras isomorphic to Bn for each positive integer
n. First, we prove some preliminary results about UV-spaces.

Definition 9.4. Let X be a UV-space and {U0, . . . , Un} a family of
CORO(X) sets. We say that {U0, . . . , Un} is a regular partition of X iff
U0, . . . , Un are pairwise disjoint and X = U0 ∨ · · · ∨ Un.

Proposition 9.5. Let X be an infinite UV-space. For each n ∈ ω, there
is a family {V0, . . . , Vn} of CORO sets that is a regular partition of X.

Proof. Consider the antichain {U0 ∩¬U1, U1 ∩¬U2, . . . , Un−1 ∩¬Un}
constructed in the proof of Proposition 9.1. Let Un+1 = ∅. We claim
that the antichain {U0 ∩ ¬U1, . . . , Un−1 ∩ ¬Un, Un ∩ ¬Un+1} is a regular
partition, i.e., its join is X. Using the equation for join in terms of int6cl6
and union (Proposition 5.3), it suffices to show that for every x ∈ X, there
is a y > x such that y ∈ Ui ∩ Ui+1 for some i ∈ {0, . . . , n}. If x ∈ ¬U1,
then since U0 = X, we have x ∈ U0 ∩ ¬U1, so we take y = x and i = 0. If
x 6∈ U1, then there is an x1 > x such that x1 ∈ U1. Now if x1 ∈ ¬U2, then
x1 ∈ U1 ∩ ¬U2, so we take y = x1 and i = 1. If x1 6∈ ¬U2, then there is
an x2 > x1 such that x2 ∈ U2. By transitivity, x2 > x. If x2 ∈ ¬U3, then
x2 ∈ U2 ∩ ¬U3, so we take y = x2 and i = 2. If x2 6∈ U3, then there is an
x3 > x2 such that x3 ∈ U3, etc. If we do not find our y and i in this way by
n− 1, then we reason as follows: given xn−1 6∈ ¬Un, there is an xn > xn−1

such that xn ∈ Un. Then since Un+1 = ∅, we have xn ∈ Un ∩ ¬Un+1, so
we set y = xn and i = n. a

To obtain Corollary 9.7 below from Proposition 9.5, we use the following
topological fact.

Fact 9.6. For any space X, V ⊆ X, and open U ⊆ X, if U ∩ V = ∅,
then U ∩ int(cl(V )) = ∅.

Corollary 9.7. Let X be a UV-space. For each positive integer m,
there is a family {U1, . . . , Um} of pairwise disjoint CORO sets such that:
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1. for every x ∈ X, there is a unique K ⊆ {1, . . . ,m} such that x ∈∨
k∈KUk and x 6∈

∨
j∈JUj for each J ( K;

2. for every K ⊆ {1, . . . ,m} such that K 6= ∅, there is an x ∈ X such
that x ∈

∨
k∈K

Uk and x 6∈
∨
j∈J

Uj for each J ( K;

3. for every K ⊆ {1, . . . ,m}, if x 6∈ ¬
∨

k∈K Uk ∨
∨

j∈J Uj for each J (
K, then there is a y > x such that y ∈

∨
k∈KUk and y 6∈

∨
j∈JUj for

each J ( K.

Proof. By Proposition 9.5, there is a family {U1, . . . , Um} of pairwise
disjoint CORO(X) sets such that X = U1 ∨ · · · ∨ Um. It follows that for
each x ∈ X, there is a K ⊆ {1, . . . ,m} such that x ∈

∨
k∈K Uk and such

that x 6∈
∨

j∈J Uj for each J ( K. It remains to show that this K is

unique. Suppose not, so there is a K ′ ⊆ {1, . . . ,m} such that K ′ 6= K,
x ∈

∨
k∈K′ Uk, and x 6∈

∨
j∈J′ Uj for each J ′ ( K ′. Since K ′ 6⊆ K,

pick k′ ∈ K ′ \ K. Since x ∈
∨

k∈K′ Uk but x 6∈
∨

j∈K′\{k′} Uj , it follows

that there is some y > x such that y ∈ Uk′ . Since Uk′ is disjoint from⋃
k∈K Uk, we have y 6∈

∨
k∈K Uk by Fact 9.6 and the equation for join in

terms of int6cl6 and union (Proposition 5.3). But then since y > x, we
have x 6∈

∨
k∈K Uk, contradicting our assumption. Thus, K is unique.

For part 2, let K ⊆ {1, . . . ,m} and K 6= ∅. Since {V ∈ CORO(X) |∨
k∈K Uk ⊆ V } is a proper filter in CORO(X), it follows by the defini-

tion of a UV-space (Definition 5.1.2) that there is some x ∈ X such that
CORO(x) = {V ∈ CORO(X) |

∨
k∈K Uk ⊆ V }. Now suppose J ( K and

consider some i ∈ K \ J . Hence by Fact 9.6, Ui is disjoint from
∨

j∈J Uj .

Thus,
∨

k∈K Uk 6⊆
∨

j∈J Uj , which with CORO(x) = {V ∈ CORO(X) |∨
k∈K Uk ⊆ V } implies that

∨
j∈J Uj 6∈ CORO(x), i.e., x 6∈

∨
j∈J Uj .

For part 3, let K ⊆ {1, . . . ,m}, and suppose x 6∈ ¬
∨

k∈K Uk ∨
∨

j∈J Uj

for each J ( K. It follows that the filter F in CORO(X) generated by
CORO(x) ∪ {

∨
k∈K Uk} is a proper filter such that

∨
j∈J Uj 6∈ F for each

J ( K. Then by the definition of a UV-space (Definition 5.1.2), there is
some y ∈ X such that CORO(y) = F . Hence CORO(x) ⊆ CORO(y),
which implies x 6 y by the definition of a UV-space (Definition 5.1), and
y ∈

∨
k∈K Uk. Finally, for J ( K, from

∨
j∈J Uj 6∈ F and F = CORO(y),

we have y 6∈
∨

j∈J Uj . a

theorem 9.8. Every infinite BA B contains subalgebras isomorphic to
Bn for each positive integer n.

Proof. Let X be the infinite UV-space dual to B and Xn the finite
UV-space dual to Bn. By duality, it suffices to show there is a surjective
UV-map f from X onto Xn. Let x1, . . . , xm be the maximal elements of
Xn. By Corollary 5.5.4, x1, . . . , xm are the co-atoms of a Boolean algebra
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obtained by adding a top node to Xn. Therefore, we have that (a) for every
y ∈ Xn, there is a unique K ⊆ {1, . . . ,m} such that y =

∧
k∈K xk.

Take a family {U1, . . . , Um} of CORO(X) sets as in Corollary 9.7. By
Corollary 9.7.1, for each x ∈ X, there is a unique K ⊆ {1, . . . ,m} such
that x ∈

∨
k∈K Uk and x 6∈

∨
j∈J Uj for each J ( K. Let f(x) =

∧
k∈K xk.

Then by (a) and Corollary 9.7.2, f is surjective.
Now we show that f is a UV-map. First note that the compact opens

of Xn are exactly the upsets of Xn with respect to 6. Now let y ∈ Xn be
such that y =

∧
i∈I xi for some I ⊆ {1, . . . ,m}. Then it follows from the

definition of f that f−1[⇑y] =
∨

i∈I Ui ∈ CORO(X). Now let U ⊆ Xn.

Then U =
⋃

y∈U ⇑y and f−1[U ] = f−1[
⋃

y∈U ⇑y] =
⋃

y∈U f
−1[⇑y]. Since

the collection of compact open sets is closed under finite unions, we obtain
that f−1[U ] is compact open in X. Therefore, f is a spectral map.

Finally, suppose f(x) 6 y′. Then there are I,K ⊆ {1, . . . ,m} such that
I ⊆ K, y′ =

∧
i∈I xi, f(x) =

∧
k∈K xk, and K is the unique subset of

{1, . . . ,m} such that x ∈
∨

k∈K Uk and (b) x 6∈
∨

j∈J Uj for each J ( K.

We claim there is a y > x such that (c) y ∈
∨

i∈I Ui and y 6∈
∨

`∈L U` for
each L ( I. By Corollary 9.7.3, it suffices to show that x 6∈ ¬

∨
i∈I Ui ∨∨

`∈L U` for each L ( I. For contradiction, suppose x ∈ ¬
∨

i∈I Ui∨
∨

`∈L U`

for some L ( I. Then since I ⊆ K and x ∈
∨

k∈K Uk, it follows that
x ∈

∨
k∈K\(I\L) Uk, which contradicts (b). By (c) and the definition of f ,

we have f(y) =
∧

i∈I xi = y′. Thus, f is a UV-map. a

§10. Perspectives on UV-spaces assuming choice. In this penul-
timate section, we briefly discuss some results about UV-spaces that can be
proved under the assumption of the Boolean Prime Ideal Theorem (BPI).

10.1. UV-spaces as upper Vietoris spaces of Stone spaces. Re-
call from Definition 3.10 that for a Stone space X, U V (X) is the hyper-
space of nonempty closed subsets of X endowed with the upper Vietoris
topology. We already observed (Corollary 5.6) that U V (X) is a UV-space.
Assuming the BPI, every UV-space arises homeomorphically in this way.

Proposition 10.1. Assuming the BPI, every UV-space is homeomor-
phic to U V (X) for some Stone space X.

Proof. Let Y be a UV-space. Let X be the Stone dual of CORO(Y ),
so Clop(X) is isomorphic to CORO(Y ). By Proposition 3.10, U V (X) is
homeomorphic to UV (Clop(X)). Combining the previous two facts, we
have that U V (X) is homeomorphic to UV (CORO(Y )), which is homeo-
morphic to Y by Theorem 5.4.2. Thus, Y is homeomorphic to U V (X). a

10.2. Equivalent Priestley spaces assuming choice. In this sub-
section, we relate UV-spaces to Priestley spaces [27]. For convenience, we
now keep track of the topology τ of a space explicitly.
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For a spectral space (X, τ), its corresponding Priestley space (X,≤, τ+)
is defined as follows: τ+ is the patch topology of τ , i.e., the topology
generated by τ ∪{X \U | U ∈ τ} as a subbasis, and ≤ is the specialization
order of τ . Note that the BPI, in its equivalent form as the Alexander
Subbasis Theorem, is used already in showing that the patch topology of a
spectral topology is compact. Conversely, if (X,≤, τ) is a Priestley space,
then X together with the topology given by open upsets of (X,≤, τ) is a
spectral space. It is well known that U ⊆ X is compact open in a spectral
space iff U is a clopen upset in the associated Priestley space, with the
right-to-left direction using the BPI.

Since UV-spaces are spectral, given a UV-space (X, τ) we can consider
the corresponding Priestley space (X,≤, τ+). It is easy to see that U ⊆ X
is CORO in (X, τ) iff U is a clopen RO subset of (X,≤, τ+), where RO
is now taken with respect to ≤. Let ClopRO(X) be the set of clopen RO
subsets of (X,≤, τ). Then the definition of a UV-space easily translates
into the following definition in terms of Priestley spaces.

Definition 10.2. A Priestley space (X,≤, τ) is a UV-Priestley space iff:

1. ClopRO(X) is closed under int≤(X \ ·);
2. if x � y, then there is a U ∈ ClopRO(X) such that x ∈ U and y /∈ U .16

3. every proper filter in ClopRO(X) is ClopRO(x) for some x ∈ X, where
ClopRO(x) = {U ∈ ClopRO(X) | x ∈ U}.

It is easy to verify that if (X, τ) is a UV-space, then (X,≤, τ+) is a UV-
Priestley space, and if (X,≤, τ) is a UV-Priestley space, then X together
with the topology given by open upsets of (X,≤, τ) is a UV-space. More-
over, given a UV-Priestley space (X,≤, τ), it is easy to see that ClopRO(X)
is a BA with meet as intersection and ¬U = int6(X \U). Conversely, given
a BA A, we obtain a dual UV-Priestley space X based on the set of proper
filters in A by defining ≤ as ⊆ and generating a topology by declaring
{â,PropFilt(A) \ â | a ∈ A} as a subbasis. It is easy to see that this is the
same as taking the UV-space dual to A and considering its corresponding
UV-Priestley space. Then A is isomorphic to the BA ClopRO(X), and each
UV-Priestley space Y is order-homeomorphic to the dual of ClopRO(Y ).

Next we discuss morphisms, which are the obvious adaptation of the
UV-maps of Definition 6.1 to the Priestley setting.

Definition 10.3. A map f : X → X ′ between UV-Priestley spaces is
called a UV-Priestley morphism iff it is a Priestley morphism (i.e., contin-
uous and order-preserving) satisfying the p-morphism condition:

if f(x) ≤′ y′, then ∃y: x ≤ y and f(y) = y′.

16Note that if we had only required that U be a clopen upset, then part 2 would be

exactly the Priestley separation axiom.
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Assuming the BPI, it is easy to show that the category of UV-spaces and
UV-maps is isomorphic to the category of UV-Priestley spaces and UV-
Priestley morphisms, which is therefore dually equivalent to the category
of BAs and BA homomorphisms by Theorem 6.7.

One can also develop a duality dictionary for this duality similar to the
one discussed in Section 6. But we will not do so here, as our primary goal
is to study the setting of choice-free dualities for BAs.

Just as one can move freely between Priestley spaces and the pair-
wise Stone spaces of [6], one can also move freely between UV-Priestley
spaces and analogous pairwise UV-spaces. We omit the details, as they are
straightforward to reconstruct based on the information above and in [6].

10.3. Goldblatt’s representation of ortholattices. Our choice-free
duality for BAs is related to Goldblatt’s [12] representation of ortholattices.
An ortholattice is a bounded lattice equipped with an additional unary
operation ′ such that a ∧ a′ = 0, a ∨ a′ = 1, a′′ = a, and a ≤ b only if b′ ≤
a′. Goldblatt showed that ortholattices can be represented using a Stone
space X equipped with a symmetric and irreflexive relation ⊥. A subset
U ⊆ X is ⊥-regular iff U = U⊥⊥ where V ⊥ = {x ∈ X | x⊥y for all y ∈
V }. The collection of all ⊥-regular subsets ordered by inclusion forms a
complete ortholattice with ′ as ⊥. Conversely, every complete ortholattice
is isomorphic to the collection of ⊥-regular subsets with ⊥ coming from a
set with a symmetric and irreflexive relation ⊥. To represent an arbitrary
ortholattice L, Goldblatt defined a space X with a binary relation ⊥ as
follows:

1. the underlying set of X is the set of all proper filters of L;
2. for F,G ∈ X, let F⊥G iff there is some a ∈ F such that a′ ∈ G;
3. the topology of X is generated by the collection of sets â and X \ â as

a subbasis, i.e., the patch topology associated with τ = {â | a ∈ L}.
Assuming the BPI, Goldblatt proved that X is a Stone space and L is
isomorphic to the collection of clopen ⊥-regular sets ordered by inclusion
with the operation ⊥. Since every BA is an ortholattice with ′ as Boolean
complement, this representation applies to BAs. Like our representation
of BAs, it uses the proper filters of L. Indeed, Goldblatt’s representation
applied to BAs is essentially the UV-Priestley representation discussed in
Section 10.2 but using the incompatibility relation ⊥ between proper filters
instead of the inclusion order on proper filters, which is the specialization
order of τ . It is easy to see that for a BA, the ⊥-regular sets are exactly
the regular open sets with respect to the inclusion order.

There are two important differences between Goldblatt’s representation
applied to BAs and ours. First, because we work with the spectral topology
τ instead of the patch topology, we do not need the extra datum of the rela-
tion ⊥; the regular sets can be defined simply in terms of the specialization
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order of the space. Thus, we can work with spaces instead of spaces plus
a binary relation. Second, because we work with the spectral topology τ
instead of the patch topology, we do not require the nonconstructive BPI.

§11. Conclusion. We have developed a full choice-free duality for BAs
in terms of UV-spaces. We showed how to translate, via this duality, the
main algebraic concepts and constructions into topological terms. We also
gave several sample applications of this duality in the form of choice-free
proofs, using spatial intuition essentially, of some basic facts about BAs.

The distinguishing features of the duality for BAs in this paper are that
(a) the duals of BAs are topological spaces and (b) the duality is choice-
free. Standard Stone duality satisfies (a) but not (b). The pointfree duality
using Stone locales satisfies (b) but not (a). To draw a contrast with the
localic approach, we characterized our approach to choice-free Stone duality
as the hyperspace approach. The choice-freeness is achieved by not working
with Stone spaces, but rather with UV-spaces, examples of which are given
by the upper Vietoris hyperspace of a Stone space. Assuming choice, all
UV-spaces arise homeomorphically in this way; but we do not need this
assumption to carry out our duality for BAs.

Though we have concentrated on BAs, we believe that choice-free dual-
ity does not end here. In future work, we aim to generalize the strategy of
this paper to obtain choice-free spatial dualities for other classes of alge-
bras (connecting with work in [23]), giving rise to choice-free completeness
proofs for non-classical logics. We hope that this can be the beginning of
a new area of choice-free duality in non-classical logic and beyond.
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